Selected Publications [bibtex]
- Zequn Zeng, Jianqiao Sun, Hao Zhang#, Tiansheng Wen, Yudi Su, Yan Xie, Zhengjue Wang, and Bo Chen#, "HICEScore: A Hierarchical Metric for Image Captioning Evaluation", (#Corresponding authors) The ACM Multimedia 2024 (ACM MM) , Melbourne, Australia, October 2024. arxiv:2403.03715 / Pytorch code in GitHub
- Zequn Zeng, Yan Xie, Hao Zhang#, Chiyu Chen, Bo Chen#, and Zhengjue Wang, "MeaCap: Memory-Augmented Zero-shot Image Captioning", (*Equal contribution by the first two authors, #Corresponding authors) The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024 (CVPR2024), Seattle, US, June 2024. arxiv:2403.03715 / Pytorch code in GitHub
- Chengxi Zang, Hao Zhang, Jie Xu, Hansi Zhang, Sajjad Fouladvand, Shreyas Havaldar, Feixiong Cheng, Kun Chen, Yong Chen, Benjamin S Glicksberg, Jin Chen, Jiang Bian, and Fei Wang, "High-throughput target trial emulation for Alzheimer’s disease drug repurposing with real-world data", Nature Communications, 2023, Nature Communications / Pytorch code in GitHub
- M. Zhou*, H. Zhang*, Z. Bai, D. Mann-Krzisnik, F. Wang, and Y. Li, "Single-cell multi-omic topic embedding reveals cell-type-specific and COVID-19 severity-related immune signatures", Cell Report Methods, 2023, (*Equal contribution by the first two authors). BioArxiv / Pytorch code in GitHub
- H. Zheng, X. Chen, J. Yao, H. Yang, C. Li, Y. Zhang, H. Zhang, I. Tsang, J. Zhou, and M. Zhou, "Contrastive Attraction and Contrastive Repulsion for Representation Learning", Transactions on Machine Learning Research, 2023, Arxiv / OpenReview / Pytorch code in GitHub
- J. Maasch, H. Zhang, Q. Yang, F. Wang, and V. Kuleshov, "Regularized Data Programming with Automated Bayesian Prior Selection", The Workshop on Structured Probabilistic Inference & Generative Modeling in International Conference of Machine Learning 2023 (ICML2023), Hawaii Convention Center, US, July 2023. OpenReview
- Z. Zeng*, H. Zhang*, Z. Wang, R. Lu, D. Wang, and B. Chen, "ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing", The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023 (CVPR2023), Vancouver, Canada, June 2023. (*Equal contribution by the first two authors). arxiv:2303.02437 / Pytorch code in GitHub
- Z. Cheng, B. Chen, R. Lu, Z. Wang, H. Zhang, Z. Meng, and X. Yuan, "Recurrent Neural Networks for Snapshot Compressive Imaging", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 45, no. 2, pp. 2264-2281, Feb. 2023. IEEE
- C. Wang, B. Chen, Z. Duan, W. Chen, H. Zhang, and M. Zhou, "Generative Text Convolutional Neural Network for Hierarchical Document Representation Learning", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022 IEEE
- H. Zhang, C. Zang, Z. Xu, Y. Zhang, J. Xu, J. BIan, D. Morozyuk, D. Khullar, Y. Zhang, A. Nordvig, E. Schenck, E. Shenkman, R. Rothman, J. Block, K. Lyman, M. Weiner, T. Carton, F. Wang, and R. Kaushal, "Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes", Nature Medicine, 29, 26-235 (2023) Nature Medicine
- Y. He, C. Wang, H. Zhang, B. Chen, and M. Zhou, "A Variational Edge Partition Model for Supervised Graph Representation Learning", Thirty-sixth Conferene on Neural Information Prossing Systems (NeurIPS), New Orleans, December 2022. Arxiv
- H. Zhang*, L. Tian*, Z. Wang, Y. Xu, P. Cheng, K. Bai, and B. Chen, "Multiscale Visual-Attribute Co-Attention for Zero-Shot Image Recognition", IEEE Transactions on Neural Network and Learning Systems, 2021. (*Equal contribution by the first two authors). IEEE
- H. Zhang*, C. Wang*, Z. Wang, Z. Duan, and B. Chen, "Learning Hierarchical Document Graphs From Multilevel Sentence Relations", IEEE Transactions on Neural Network and Learning Systems, 2021. (*Equal contribution by the first two authors). IEEE
- Z. Duan*, H. Zhang*, C. Wang, Z. Wang, B. Chen, and M. Zhou, "EnsLM: Ensemble Language Model for Data Diversity by Semantic Clustering", The 59th Annual Meeting of the Association for Computational Linguistics (ACL), Online, Aug, 2021. (*Equal contribution by the first two authors). ACL
- C. Wang, B. Chen,S. Xiao, Z. Wang, H. Zhang, P. Wang, N. Han, and M. Zhou, "Multimodal Weibull Variational Autoencoder for Jointly Modeling Image-Text Data", to appear in IEEE Transactions on Cybernetics 2021+. IEEE / PDF
- Z. Wang*, H. Zhang*, Z. Cheng, and X. Yuan, "MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing", Conference on Computer Vision and Pattern Recognition (CVPR), Online, June, 2021. (*Equal contribution by the first two authors). arXiv:2103.01786 / Pytorch code in GitHub
- Z. Cheng, B. Chen, G. Liu, H. Zhang, R. Lu, Z. Wang, and X. Yuan, "Memory-Efficient Network for Large-scale Video Compressive Sensing", Conference on Computer Vision and Pattern Recognition (CVPR), Online, June, 2021. arXiv:2103.03089 / Pytorch code in GitHub
- He S. Yang, Yu Hou, Hao Zhang, Amy Chadburn, Lars F. Westblade, Richard Fedeli, Peter A.D. Steel, Sabrina E. Racine-Brzostek, Priya Velu, Jorge L. Sepulveda, Michael J. Satlin, Melissa M. Cushing, Rainu Kaushal, Zhen Zhao, Fei Wang, "Machine learning analysis highlights the down-trending of the proportion of COVID-19 patients with a distinct laboratory result profile", preprint on medRxiv
- W. Chen, B. Chen, Y. Liu, Q. Zhao, H. Zhang, L. Tian, "Max-Margin Deep Diverse Latent Dirichlet Allocation with Continual Learning", to appear in IEEE Transactions on Cybernetics 2021+. IEEE
- C. Wang*, H. Zhang*, B. Chen, D. Wang, Z. Wang, M. Zhou, "Deep Relational Topic Modeling via Graph Poisson Gamma Belief Network," Thirty-fourth Conferene on Neural Information Prossing Systems (NeurIPS), Online, December 2020. PDF / NeurIPS (*Equal contribution by the first two authors)
- W. Chen*, C. Wang*, B. Chen, Y. Liu, H. Zhang, M. Zhou, "Bidirectional Convolutional Poisson Gamma Dynamical Systems," Thirty-fourth Conferene on Neural Information Prossing Systems (NeurIPS), Online, December 2020. PDF / NeurIPS (*Equal contribution by the first two authors)
- Z. Wang*, D. Duan*, H. Zhang^, C. Wang, L. Tian, B. Chen, M. Zhou, "Friendly Topic Assistant for Transformer Based Abstractive Summarization," The 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, November 2020. PDF / EMNLP (*Equal contribution by the first two authors, ^Corressponding author)
- Z. Wang, B. Chen, R. Lu, H. Zhang, H. Liu, P. Varshney, "FusionNet: An Unsupervised Convolutionl Variational Network for Hyperspectral and Multispectral Image Fusion," to appear in IEEE Transactions on Image Processing 2020+. PDF / IEEE
- Z. Wang, B. Chen, H. Zhang, H. Liu, "Unsupervised Hyperspectral and Multispectral Image Fusion Based on Nonlinear Variational Probabilistic Generative Model," to appear in IEEE Transactions on Neural Network and Learning System. IEEE
- Z. Cheng, R. Lu, Z. Wang, H. Zhang, B. Chen, Z. Meng, X, Yuan, "BIRNAT: Bidirectional Recurrent Neural Networks with Adversarial Training for Video Snapshot Compressive Imaging," European Conference on Computer Vision (ECCV2020), Online, August 2020. PDF / ECCV / Python code in GitHub
- S. Si, R. Wang, J. Wosik, H. Zhang, D. Dov, G. Wang, R. Henao, L. Carin, "Students Need More Attention: BERT-based Attention Model for Small Data with Application to AutomaticPatient Message Triage," Machine Learning for Healthcare (MLHC2020), Online, August 2020. PDF / arXiv:2006.11991 / Python code in GitHub
- H. Zhang, B. Chen, Y. Cong, D. Guo, H. Liu, and M. Zhou, "Autoencoding Topic Model with Scalable Hybrid Bayesian Inference," to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence 2020+. arXiv:2006.08804 / PDF / IEEE early access
- Z. Wang*, C. Wang*, H. Zhang, Z. Duan, M. Zhou, and B. Chen, "Learning dynamic hierarchical topic graph with graph convolutional network for document classification," International Conference on Artificial Intelligence and Statistics (AISTATS2020), Palermo, Sicily, Italy, June 2020. (*Equal contribution by the first two authors). PDF / AISTATS / Appendix
- H. Zhang, B. Chen, L. Tian, Z. Wang, and M. Zhou, "Variational hetero-encoder randomized generative adversarial networks for joint image-text modeling," International Conference on Learning Representations (ICLR2020), Addis Ababa, Ethiopia, Apr. 2020. PDF / ICLR / arXiv:1905.08622 / Code in GitHub
- D. Guo, B. Chen, H. Zhang, and M. Zhou, "Deep Poisson gamma dynamical systems," Neural Information Processing Systems, (NeurIPS2018), Montreal, Canada, Dec. 2018. PDF / arXiv:1810.11209 / Python (TensorFlow) Code in GitHub
- H. Zhang, B. Chen, D. Guo, and M. Zhou, "WHAI: Weibull hybrid autoencoding inference for deep topic modeling," International Conference on Learning Representations (ICLR2018), Vancouver, Canada, May 2018. PDF / arXiv:1803.01328 / Python (Theano) code in GitHub
- H. Zhang, B. Chen, Z. Wang, and H. Liu, "Deep max-margin discriminant projection," IEEE Transactions on Cybernetics, Vol. 49, No. 7, 2454-2466, July 2019. PDF / IEEE
- Z. Wang, B. Chen, H. Zhang, and H. Liu, "Variational Probabilistic Generative Framework for Single Image Super-Resolution," Signal Processing, 2019: 92-105. PDF / ELSEVIER
- B. Chen, H. Zhang, X. Zhang, W. Wen, H. Liu, and J. Liu, "Max-Margin Discriminant Projection via Data Augmentation," IEEE Transactions on Knowledge and Data Engineering, 27(7), 1964-1976, 2015. PDF / IEEE
- Z. Wang, Y. Wang, H. Liu, and H. Zhang, "Structured kernel dictionary learning with correlation constraint for object recognition," IEEE Transactions on Image Processing, 26(9):4578-4590, 2017. PDF / IEEE
© Hao Zhang