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In this paper, a general variational probabilistic generative framework parameterized by deep networks 

is proposed for single image super-resolution, which assembles the advantages of coding-based methods 

and regression-based methods. We use probabilistic generative networks to model the joint full like- 

lihood of a pair of low-resolution (LR) and high-resolution (HR) patches which are generated from a 

shared latent representation. An inference model is applied to infer the stochastic distribution of the 

latent representation. By jointly optimizing the generative and inference models, a regression process to 

the distribution of the HR patch is implied during the learning phase, which provides an efficient forward 

mapping to accomplish the super-resolution task. We use our framework as a guidance and develop a 

new model called PGM-CP, with the help of an informative conditional prior and a consistent recognition 

model. We likewise show how three existing popular example-based SR methods can be “reinvented” un- 

der our framework. The effectiveness and efficiency of the proposed method is examined based on three 

public datasets. Experimental results demonstrate that our model is competitive with state-of-the-art ap- 

proaches, especially when the image is corrupted by noise. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Image super-resolution (SR) is desirable in overcoming the in-

herent resolution limitations from low-cost imaging sensors or

other factors, and have shown promising results in many applica-

tions, such as medical diagnosis, remote sensing, and surveillance

[1,2] . Given multiple low-resolution (LR) images from the same

scene, the SR task is cast as the inverse problem of recovering

the high-resolution (HR) image based on reasonable assumptions

about the observation model that maps the HR image to LR ones,

which is an ill-posed problem. Various deterministic and statistic

regularization approaches, e.g., [3–6] , have been proposed to stabi-

lize the inversion of such ill-posed problem. However, the perfor-

mances of those approaches degrade when the available LR images

are insufficient [7,8] , an extreme case as single LR image which is

a practical scenario in real applications. In this paper, we focus on

the task of single image SR, aiming at recovering an HR image from

a single LR image. 
∗ Corresponding author. 
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A straight forward solution to enhance the resolution of the LR

mage is realized by interpolation, such as bicubic, Lanczos [9] , and

dge-guided methods [10,11] . In spite of their low computational

ost, those methods are prone to producing blurred edges and un-

leasant artifacts [12] . Recently, example-based strategy has been

ostly adopted, leveraging machine learning techniques to restore

he missing details of the LR image based on a set of prior exam-

les. Among those methods, some approaches exploit the assump-

ion that small patches often recur within and across scales of the

ame image, and conduct self-similarity examples from the testing

mage itself [13–16] . While, another line of works focus on learn-

ng the relationship between the LR and HR patches in pair based

n external dataset, which this paper belongs to. Existing exter-

al example-based methods roughly concern two categories [17] :

oding-based methods and regression-based methods. 

The coding-based methods derive from modeling the decoding

rocess from the latent codes to the observed patches, serving the

R task indirectly. Methods in [18] and [17] adopt the philosophy

f locally linear embedding (LLE) [19] from manifold learning, and

ssume that the LR and HR patches form manifolds with similar

ocal geometry, such that a pair of LR and HR patches can be lin-

arly reconstructed by its neighbors with shared weights. However,

https://doi.org/10.1016/j.sigpro.2018.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.10.004&domain=pdf
mailto:zhengjuewang@163.com
mailto:bchen@mail.xidian.edu.cn
https://doi.org/10.1016/j.sigpro.2018.10.004


Z. Wang et al. / Signal Processing 156 (2019) 92–105 93 

t  

t  

t  

a  

c  

L  

t  

e  

l  

f  

b  

s  

a  

m  

t  

c

 

f  

g  

r  

f  

[  

g  

c  

L  

e  

e  

D  

i  

a  

p  

r  

i  

d  

e  

t  

t  

b  

t  

a  

s  

o

 

f  

d  

a  

m  

i  

i  

a  

w  

m  

m  

s

 

p  

S  

f  

f  

n  

v  

e  

t  

p  

r

 

i  

r  

n  

(  

r  

r

 

l  

r  

t  

i

 

w  

m  

S  

e  

s

2

 

p  

L  

a

 

i  

L  

p  

i  

r  

i

 

 

 

w  

r  

w  

I  

t  

t  

d  

o  

c

 

t

=

=

he manipulation of neighbor search on large training dataset is of-

en computational expensive. Yang et al. [7,8,20] apply linear dic-

ionary learning and constrain that the sparse representation of

n LR patch over the LR dictionary is identical to that of its HR

ounterpart over the HR dictionary, forming a SR path from the

R patch to its sparse code and HR patch successively. Considering

hose methods have the requirement of specifying the parameters,

.g., the number of dictionary atoms, the variance of the noise, Po-

atkan et al. [21] develop a sparse Bayesian nonparametric method

or SR, where the sparse prior of the latent variable is provided

y a beta-Bernoulli process. Thanks to the sparsity reconstruction

cheme that models the distribution of the noise, methods in [7,8] ,

nd [21] are robust to noise to some degree. However, the perfor-

ances of those methods are limited by the linear nature, and the

esting stage is time-consuming, since they need to infer the latent

odes iteratively. 

The regression-based methods directly learn mapping functions

rom the LR patch to its HR counterpart. In [22] and [23] , tensor re-

ression and kernel ridge regression are adopted for this purpose,

espectively. Considering that deep architectures are more power-

ul in data expression than shallow models in various applications

24–29] , various methods build deep networks to solve the SR re-

ression problem. In [30–33] , and [34] , a coupled deep autoen-

oder, a deep convolutional neural network, a network based on

ISTA [35] , a deeply-recursive convolutional network, and a gen-

rative adversarial network, are respectively designed to learn an

nd-to-end non-linear mapping between the LR and HR patches.

uring the testing phase, in contrast to the coding-based methods

teratively inferring the latent codes, the regression-based methods

re more efficient thanks to the forward mapping. Though the SR

erformances are appealing, the regression-based methods lack of

obustness when noise or missing values are present in the testing

mages. This is partially due to the fact that the aforementioned

eep models use deterministic forward mappings to realize point

stimate, which highly relies on the point similarity between the

raining and testing datasets [36] . Therefore, any anomaly in the

esting image, e.g., noise, would be treated as normal pixels to

e mapped into the output image. Although [32] and [31] claim

hat the sparse coding is implied in their networks, they do not

pply potential uncertainty of the latent representations nor con-

train the reconstruction of a clean input, therefore the robustness

f the latent codes to noise is not guaranteed [37] . 

Thus, in this paper we try to formulate a general framework to

use the strategies of coding and regression for the SR task, in or-

er to realize good SR performance with low computational cost

nd robustness to noise. It is known that probabilistic generative

odels aim to reveal the entire distribution profile of the underly-

ng structure of the data, which possess robustness and flexibility

n modeling noise characteristics and priori knowledge [1] . Taking

dvantages of both probabilistic generative models and deep net-

orks becomes popular and has achieved state-of-the-art perfor-

ance in other tasks, such as supervised learning [38] , and recom-

ender system [37] . The main contributions of the this paper are

ummarized as follows: 

Firstly, a general variational probabilistic generative framework

arameterized by deep network is proposed for single image SR.

pecifically, the probabilistic generative network models the joint

ull likelihood of a pair of LR and HR patches that are generated

rom a shared latent variable, acting as a decoder; an inference

etwork is applied to infer the stochastic distribution of the latent

ariable, acting as an encoder. Since we jointly optimize the gen-

rative and inference models, a regression process to the distribu-

ion of the HR patch is implied during the learning phase, which

rovides an efficient forward mapping to accomplish the super-

esolution task. 
Besides, since the proposed framework is flexible that can be

mplemented with different choices of prior, likelihoods, and neu-

al networks, we use our framework as a guidance and develop a

ew model, probabilistic generative model with conditional prior

PGM-CP), where an informative conditional prior and a consistent

ecognition model are proposed with low computational cost and

obustness to noise. 

In addition, we explicitly formulate how the existing popu-

ar coding-based methods ScSR [8] and BPFASR [21] , and the

egression-based method SRCNN [39] can be “reinvented” under

he propose framework, in order to make the comparisons more

ntuitive. 

The rest of this paper is organized as follows. In Section 2 ,

e formulate the proposed framework. In Section 3 , we imple-

ent the framework and show a novel SR model called PGM-CP.

ection 4 detailed compares the PGM-CP with three existing mod-

ls under the proposed framework. Experimental results are pre-

ented in Section 5 . Section 6 concludes this paper. 

. Variational probabilistic generative framework 

Consider a data set { X l , X h } = { x (l) 
i 

, x (h ) 
i 

} N 
i =1 

consisting of N data

airs, where x (l) 
i 

and x (h ) 
i 

are two column vectors representing an

R patch and an HR patch at the corresponding locations in an LR

nd HR image pair, respectively. 

Firstly, a probabilistic generative model (PGM) is proposed aim-

ng at modeling the generative processes and distributions of the

R and HR patches, and revealing the inherent relations between

atches in pair in order to serve the task of single-image SR. It

s assumed that x (l) 
i 

and x (h ) 
i 

are generated with a shared latent

epresentation, and that all the data pairs are independently and

dentically distributed. More detailed formulations are as follows: 

• Prior: the latent variable z i corresponding to the i th data pair

is generated from some prior distribution p ( z i ). 
• Likelihood: the i th data pair is generated from the following

conditional distributions: 

p θ1 
( x (l) 

i 
| z i ) = F( . . . , f m 

( z i ) , . . . ) , m = 1 , 2 , . . . (1) 

p θ2 
( x (h ) 

i 
| z i ) = G( . . . , g n ( z i ) , . . . ) , n = 1 , 2 , . . . (2) 

x (l) 
i 

and x (h ) 
i 

are conditional independent: 

p θ1 , θ2 
( x (l) 

i 
, x (h ) 

i 
| z i ) = p θ1 

( x (l) 
i 

| z i ) p θ2 
( x (h ) 

i 
| z i ) (3)

here, F and G are some distributions, { f m 

} and { g n } are the cor-

esponding sufficient statistics which are deterministic functions

.r.t. the latent variable z i with parameters θ1 and θ2 , respectively.

n terms of their highly expressive ability, deep networks are used

o realize these functions, usually non-linear, so that the genera-

ive process describes the nonlinear directed-relationship from the

istribution of the latent representation to the distributions of the

bserved spaces, which should be more powerful than the linear

oding-based methods in [8] and [21] . 

The objective function is to maximize the joint full likelihood of

he observed X l and X h as follows: 

log p(X l , X h ) (4) 

 

∑ N 

i =1 
log p( x (l) 

i 
, x (h ) 

i 
) (5) 

 L ( θ1 , θ2 , φ; X l , X h ) + 

N ∑ 

i =1 

KL 

[
q φ( z i |·) 

∣∣∣∣p( z i | x (l) 
i 

, x (h ) 
i 

) 
]

(6) 
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Fig. 1. Ordered activity values of the latent units. The activity statistic is defined as 

A u = Cov (E u ∼q φ (u |·) [ u ]) following [41] , and measured on the Set14 dataset [42] with 

a hidden layer of 200 units. As opposed to only 20 active units with the prior 

N (0 , I ) , the informative conditional prior helps to produce more active latent units 

and also promote the activity values of those units. 
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where, a parameterized variational distribution q φ( z i | · ), also called

recognition model, is applied to approximate the intractable true

posterior p( z i | x (l) 
i 

, x (h ) 
i 

) in Kullback–Leibler (KL) divergence, de-

noted as KL [ ·||·] . Since the KL divergence in the second term is

non-negative, optimizing (6) is equivalent to maximizing the first

term, i.e., the evidence lower bound: 

L ( θ1 , θ2 , φ; X l , X h ) = 

∑ N 

i =1 
E q φ( z i |·) [ ln p θ1 

( x (l) 
i 

| z i )] 

+ 

∑ N 

i =1 
E q φ( z i |·) [ ln p θ2 

( x (h ) 
i 

| z i )] 

−
∑ N 

i =1 
KL [ q φ( z i |·) || p( z i )] (7)

where, the first and second terms respectively represent the ex-

pected negative reconstruction errors of the LR and HR training

patches with the latent representations drawn from the optimal

variational distributions; the third term measures the KL diver-

gence between the variational distribution and the prior distribu-

tion of the latent representation, acting as a regularizer to affect

the model generalization. It is interesting to notice that the second

term plays the role gathering the recognition model and the HR

generative model, describing the regression process to the distri-

bution of the HR patch, i.e., the SR process. The robustness of the

model to noise is addressed from two aspects: first, the model in-

fers the stochastic distribution of the latent variable as well as the

observed space, instead of point estimate; second, the inferred la-

tent representation tries to restore a clean LR patch via the first

term, since, as claimed in [37] , the variational distribution can

be viewed as corrupting the latent representation with Gaussian

noise, and the noise level of the latent representation is automati-

cally learned through the recognition model, which leads to more

robust and systematic learning of latent representation regardless

of the data corruption scheme. Thanks to the third term, the prior

information is easily brought in to affect the SR process. 

By applying the stochastic gradient variational Bayes (SGVB)

[40] , inferring the latent representation z i and learning the param-

eters θ1 , θ2 , and φ are simultaneously realized. 

The proposed PGM is a general and flexible framework: 1) the

choice of the conditional distributions is flexible, depending on

the type of data, e.g., Gaussian for continuous-valued data, and

Bernoulli for binary-valued data; 2) the choice of the variational

distribution is flexible based on different observations; 3) the prior

information w.r.t. the latent representation can be delivered via

a suitable p ( z i ); 4) different networks can be embedded into the

PGM, such as multilayer perceptron (MLP) and convolutional neu-

ral network (CNN). 

3. Probabilistic generative model with conditional prior 

(PGM-CP) 

In this section, we use our framework to guide the development

of a novel SR model based on specific choices of the conditional

distributions p θ1 
( x (l) 

i 
| z i ) , p θ2 

( x (h ) 
i 

| z i ) , the prior distribution p ( z i ),

and the variational distribution q φ( z i | · ). 

3.1. Expressive likelihood 

Considering the image patches are continuous-valued, both of

the conditional distributions in (1) and (2) are designed as Gaus-

sian distributions: 

p θ1 
( x (l) 

i 
| z i ) = N ( μp, (l) ( z i ) , σ

2 
p, (l) ( z i ) I ) , (8)

p θ2 
( x (h ) 

i 
| z i ) = N ( μp, (h ) ( z i ) , σ

2 
p, (h ) ( z i ) I ) , (9)

where, N ( μ, σ2 I ) denotes a Gaussian distribution with mean vec-

tor μ and diagonal covariance matrix σ2 I with σ2 being its diag-

onal elements, I is the unit matrix. Both μ and σ2 are non-linear
unctions with respect to the latent variable z i , where the subscript

 (or q in (11) ) is to highlight that the μ and σ2 belong to the

enerative (or recognition) model, while the subscripts ( l ) and ( h )

ighlight the μ and σ2 belong to the LR or the HR generative path,

espectively. Therefore, θ1 and θ2 contain all the parameters of the

etworks to be learned. 

.2. Conditional prior 

According to the objective function (7) , the prior distribution

 ( z i ) plays an important role in regularizing the variational dis-

ribution which affects the inference of the latent representation

ndirectly. 

A naive choice is p( z i ) = N (0 , I ) as used in the VAE model [40] ,

ut have several drawbacks. A commonly known problem is self-

rune [43] , namely only limited degrees of freedom are used, such

hat the model’s capacity is weakened. As shown in Fig. 1 , most

f the latent units drawn from the variational distribution q φ( z i | · )

re inactive, which is attributed to the facts that q φ( z i | · ) is driven

owards the prior N (0 , I ) during the early training and unable to

e resurrected [44] . More importantly, uni-modal prior is insuffi-

ient in describing the real-world data distributions which are of-

en complex and multi-modal, and limits the recognition model to

apture more complex distributions. 

Since conditional prior is believed to have the ability of mod-

lling multiple modes [45] , we propose an informative conditional

rior to solve the above two issues. We assume that the prior of

he latent representation is conditioned on the HR observations,

hose sufficient statistics are parameterized by neural networks,

ormally as: 

p ω ( z i | x (h ) 
i 

) = N ( μprior ( x 
(h ) 
i 

) , σ2 
prior ( x 

(h ) 
i 

) I ) , (10)

hich establish a channel for the information transforming from

he HR patch to its latent representation. Since both the prior and

he recognition model embrace the mapping from the observed

pace to the latent space and are constrained in KL divergence,

ore unique details contained in the HR patches can influence the

ecognition model to reveal a more meaningful latent space. More-

ver, the conditional prior in (10) and the LR generative model in

8) implies the degradation process from the HR patch to the cor-

esponding LR patch. 

Although we assume that every point in the latent space fol-

ows its own distribution, the parameters in ω are global that can

e efficiently inferred. 
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Fig. 2. The graphical illustration of (a) the VAE model in [40] , (b) the conditional modality learning in [46] , and (c) the proposed PGM-CP, where the generative and 

recognition models are represented by solid lines and dashed lines, respectively. 

Fig. 3. Illustration of the networks learned in PGM-CP. The subscript “i” is omitted. 
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.3. Consistent recognition model 

In both training and testing, one crucial step is to infer the la-

ent representation via the recognition model q φ( z i | · ), which is an

pproximation to the true posterior p( z i | x (l) 
i 

, x (h ) 
i 

) . Such posterior

s different from the posterior p ( z i | x i ) in the VAE model in [40] ,

ecause it is conditioned on binary modalities in our model, but

n the single modality in the VAE model. Since the HR modality

s unobserved during testing, training the recognition model via

inary-modality fusion, i.e., q φ( z i | x (l) 
i 

, x (h ) 
i 

) , might be a good ap-

roximation to the true posterior on the training dataset, but it

s clumsy to be used on the testing dataset with the HR patches

nobserved. 

In order to maintain the consistency in both training and test-

ng, we employ an uniform recognition model which enforces the

R patches as inputs. Formally, the variational distribution is writ-

en as: 

 φ( z i | x (l) 
i 

) = N ( μq ( x 
(l) 
i 

) , σ2 
q ( x 

(l) 
i 

) I ) , (11)

here, a Gaussian is chosen for the purpose of reparameterization

40] . A major benefit of the consistent recognition model is that

he recognition network can be directly used for testing data with-

ut running any optimization. 

.4. Graphical model and network implementation 

According to the above analysis, the graphical model of the pro-

osed PGM-CP is illustrated in Fig. 2 , where two other existing

odels are also illustrated for better comparison. It can be seen

hat the shared latent variable establishes a bridge between an LR

atch and its corresponding HR patch. If we consider the HR patch
s our target, the PGM-CP is a supervised generative model aiming

t image SR, more than representing the visible data like the un-

upervised generative model, VAE in Fig. 2 (a). Besides, compared

ith conditional modality learning in Fig. 2 (b) modelling the con-

itional likelihood of one modality given the other, we are inter-

sted in the joint full likelihood of both modalities. Based on the

robabilistic modelling analyzed before, commonly used basic net-

orks are embedded in our model to realize the nonlinear mean

nd covariance functions in (8) –(11) . 

Here, we use the following equations as an example to illustrate

he network implementation of the distribution in (11) . Firstly, a

idden layer h 1 is obtained via a MLP. 

 1 = MLP ( x (l) ) = tanh (W 1 x 
(l) + b 1 ) , (12)

hich is a single-layer MLP and can be extended into multiple

ayers. The activation function tanh is chosen following [40] . And

hen, the sufficient statistics are realized by 

q = Linear ( h 1 ) = W 2 h 1 + b 2 , (13) 

q = exp (W 3 h 1 + b 3 ) . (14) 

Thus, the proposed probabilistic generative model appears as a

omplex network as shown in Fig. 3 , which is distinct from the

egression-based methods [30–34] . On the one hand, compared

ith them applying point estimates, the PGM-CP prefer distri-

ution estimates, modeling the sufficient statistics. On the other

and, compared with them only considering the regression ability

rom the LR patch to the HR patch, the PGM-CP also take the ro-

ustness and regularization into account, namely the LR generative

erm and the KL divergence term. 
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As a result, the proposed probabilistic generative model can be

efficiently optimized via backpropagation (BP) [47] and stochastic

optimization methods such as Adam [48] . 

3.5. Image super-resolution 

During the testing stage, the recognition model and the HR gen-

erative model can be concatenated as a whole path to serve the

SR task, as shown in Figs. 2 and 3 . The i th reconstructed high-

resolution patch 

ˆ y i is obtained via a simple and efficient forward

mapping: 

ˆ y i = μp, (h ) ( μq ( y 
(l) 
i 

)) . (15)

which is expressive enough owing to the non-linearity, such that

there is no need to perform feature extraction in advance like [8] .

Actually, all the patches are expressed by stacking the original pix-

els as column vectors. 

After patch-wise super-resolution, we put the patches { ̂ y i } into

the corresponding locations. The overlapping patches are averaged

to produce the reconstructed image ˆ Y h . Following the strategy used

in [8,21] , a global fine-tuning is applied by computing: 

Y 

∗
h = arg min 

Y h 
‖ SHY h − Y l ‖ + c‖ Y h − ˆ Y h ‖ 

2 
2 (16)

where, S represents the downsampling operator, H a blurring filter,

c is a constant, set as 0.01 in our experiment. All of them are set

according to [8] . The whole process of the super-resolution realiza-

tion is summarized in Algorithm 1 . 

Algorithm 1 PGM-CP for super-resolution. 

Input: A set of N training data points { X l , X h } = { x (l) 
i 

, x (h ) 
i 

} N 
i =1 

, a

low-resolution image Y l . 

Training stage: 

• Initialize θ1 , θ2 , φ, and ω 

• Repeat until convergence 

Gradients estimation w.r.t. θ1 , θ2 , φ, and ω based on mini-

batches using BP; 

Parameters update using the Adam algorithm. 

Testing stage: 

• patch-wise super-resolution 

ˆ y i = μp, (h ) ( μq ( y 
(l) 
i 

)) . 
• fine tuning 

Y 

∗
h 

= arg min Y h 
‖ SHY h − Y l ‖ + c‖ Y h − ˆ Y h ‖ 2 2 

Output: super-resolution image Y 

∗
h 

4. Examples under the proposed framework 

For better understanding the inclusivity and flexibility of our

proposed framework PGM and make concrete comparisons with

some coding-based and regression-based methods, we explicitly

state how recently developed SR methods ScSR [8] , BPFASR [21] ,

and SRCNN [39] partially fall within the proposed framework. 

4.1. Coding-based examples 

Specify that the conditional distributions in (1) and (2) are

Gaussian distributions as follows: 

p θ1 
( x (l) 

i 
| z i ) = N (D l z i , α

−1 
l 

I ) , (17)

p θ2 
( x (h ) 

i 
| z i ) = N (D h z i , α

−1 
h 

I ) , (18)
here the mean vectors are linear functions, and the covariance

atrices as constant matrices. 

As the elements in the latent variable z i are i.i.d. drawn from a

ero-mean Laplace distribution, i.e., z i,k ∼ Laplace (0 , 2 β−1 ) , where

 i, k is the k -th element of z i , the ScSR [8] can be derived by mini-

izing the negative logarithm of the posterior density function as

ollows: 

− ln p(D l , D h , Z | X l , X h ) (19)

 

N ∑ 

i =1 

{
αl ‖ x (l) 

i 
−D l z i ‖ 

2 
2 +αh ‖ x (h ) 

i 
−D h z i ‖ 

2 
2 +β

K ∑ 

k =1 

| z i,k | 
}

(20)

 αl ‖ X l − D l Z ‖ 

2 
2 + αh ‖ X h − D h Z ‖ 

2 
2 + β‖ Z ‖ 1 (21)

here, Z = [ z 1 , z 2 , . . . , z N ] . 

As the prior distribution of the latent variable is chosen as a

eta-Bernoulli process as stated in [21,49] : 

 i = υi � s i , (22)

i,k ∼ Bernoul l i (πk ) , (23)

k ∼ Beta (cη, c(1 − η)) , (24)

 i ∼ N (0 , α−1 
s ) , (25)

he BPFASR [21] model is aroused. 

According to the above analysis, both ScSR and BPFASR are

volved from the same likelihood setting but different uni-modal

riors. By comparing (17) and (18) with (8) and (9) , it is clear that

ur model can better express the relationship between the latent

epresentation and the LR and HR patches owing to the non-linear

unctions. 

Although the models in [8] and [21] can be reinvented under

he proposed framework, the inferences and learnings are quite

ifferent from the PGM. In [8] , the ScSR is optimized as an l 1 -

egularization problem which is solved by iteratively optimizing

he sparse codes { z i } and the dictionaries D l and D h . In [21] , the

PFASR can be inferred using Gibbs sampling, variational inference

VI), or online VI. All those inference methods are time-consuming

or test, since they need to infer the latent representation itera-

ively. Whereas, the generative and recognition models are jointly

ptimized in our framework, leading an efficient nonlinear feedfor-

ard mapping for test. 

.2. Regression-based example 

Specify that the conditional distributions in (2) and the varia-

ional distribution in (11) are Gaussian distributions as follows: 

p θ2 
( x (h ) 

i 
| z i ) = N ( CNN 1 ( z i ) , I ) , (26)

 φ( z i | x (l) 
i 

) = N ( CNN 2 ( x 
(l) 
i 

) , γ 2 I ) , (27)

here, the CNN 1 ( · ) and CNN 2 ( · ) are nonlinear functions realized

y convolutional neural networks. 

As the γ 2 approaches to zero, the limit of the Normal distri-

ution in (27) is a dirac delta distribution δ
(
z i ; CNN 2 ( x 

(l) 
i 

) 
)

that

atisfies 
 

F ( z i ) δ( z i ) d z i = F ( CNN 2 ( x 
(l) 
i 

) 
)
) (28)
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Fig. 4. The procedure of constructing a pair of LR-HR images and a pair of LR-HR patches. 
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1 The network structure is simplified notated. Take 30 0-10 0-20 0 as an exam- 

ple: the inference network and the prior network respectively has two hidden lay- 

ers with 300 and 100 units successively; the dimension of latent representation z 

is 200; every generative network has two hidden layers with 100 and 300 units 

successively. 
or all continuous function F . As the function F is identified as

 x (h ) 
i 

− CNN 1 ( z i ) ‖ 2 , we have: 

− E 

q φ( z i | x (l) 
i 

) 

[
ln p θ2 

( x (h ) 
i 

| z i ) 
]

(29) 

 −
∫ [

ln p θ2 
( x (h ) 

i 
| z i ) 

]
q φ( z i | x (l) 

i 
) d z i (30) 

 

∫ ∥∥x (h ) 
i 

− CNN 1 ( z i ) 
∥∥2 

δ
(
z i ; CNN 2 ( x 

(l) 
i 

) 
)
d z i (31) 

 

∥∥x (h ) 
i 

− CNN 1 

(
CNN 2 ( x 

(l) 
i 

) 
)∥∥2 

(32) 

hich describe the mean squared error of the CNN regression

roblem for super-resolution, coincident with the loss function in

39] . 

In other words, under the above assumptions, the SRCNN model

an be derived from the second term in (7) via discarding the

andomness of the latent representation. In contrast to the SR-

NN only considering the regressive ability to the training data,

ur framework also take the model’s robustness and generalization

nto account which are reflected by the other two terms in (7) . 

Clearly, the PGM is a flexible probabilistic model that implies

ore constraints than the purely network-based method, e.g., SR-

NN. Thus, our model has the potential that using relatively less

ata but achieving comparable results as the SRCNN. 

. Experiments 

In this section, we present experimental results on three com-

only used datasets to illustrate the effectiveness and efficiency of

he proposed PGM-CP for the single image super-resolution task.

e compare our approach with Bicubic interpolation, two coding-

ased methods ScSR [8] and BPFASR [21] , and four regression-

ased methods SRCNN [39] , SRCDA [30] , SRGAN [34] , and LapSRN

50] . 

.1. Data and setting 

We adopt a dataset consisting of 91 images [8] for training, and

erform evaluations on three widely used benchmark datasets Set5

51] , Set14 [42] and BSD100 [52] with scaling factors 2, 3, and 4.

ollowing the protocols in [21,39] , the LR images are synthesized

ia down-sampling the ground-truth HR images, which are subse-

uently up-scaled with equal scaling factor via bicubic interpola-

ion to form the LR inputs of our model, as shown in Fig. 4 . The

ame-sized patches extracted from the same locations in both the

R input and the HR ground truth are treated as LR-HR patch pairs.

We set the patch size as 8 × 8, 10 × 10, and 12 × 12 when us-

ng scaling factors 2, 3, and 4, respectively. After discarding some

mooth and similar ones [8] , we obtain about 10 0 , 0 0 0 pairs of

raining patches. For fair comparison, following [8,21,34,39] , we
valuate all algorithms only on the luminance channel (Y channel

n YCbCr color space) and apply Bicubic interpolation on the other

hannels (Cb and Cr) just for the purpose of displaying. 

.2. Analysis on network structures 

As shown in Fig. 3 , the model consists of four basic networks

espectively for prior distribution, variational distribution, LR and

R conditional distributions. We restrict that the recognition net-

ork mirrors the generative network, and that the prior network

ave the same structure with the recognition network 1 . The pa-

ameters of these networks are not shared. Thus, the model archi-

ecture is relevant with the network structure from three aspects:

he dimension of the latent representation z , the dimension of the

idden layers h , and the depth, which are reflected by three groups

f experiments. What calls for special attention is that the hidden

ayers are different from the latent representation, since h is deter-

inistic, while z is a stochastic variable. 

All the parameters are initialized by random sampling from

 ( 0 , 0 . 01 ) , and we optimize them via Adam algorithm [48] . The

odel is trained with 2 × 10 6 backpropagations, about 2 h. 

The comparisons are made on the Set14 dataset according to

he SR performance on mean peak signal-to-noise ratio (PSNR)

hen scaling factor is 2, as shown in Table 1 . 

It can be seen that, enlarging the dimension of the latent rep-

esentation or the dimensions of the hidden layers can moderately

mprove the PSNR performance. Three controlled experiments are

onducted with different numbers of hidden layers. Among them,

he 30 0-30 0-20 0 performs the best on PSNR, which illustrates that

he model could benefit from increasing the depth of the network

o a certain degree thanks to the expressive ability, and that a

eeper model does not always result in better performance. Be-

ause, the deeper, the more parameters the model has to estimate.

Based on these analysis, the structure 40 0-40 0-20 0 is used for

urther comparisons in the following subsections. 

.3. Analysis on the prior distribution 

Since the prior distribution could affect inf erring the latent

pace through the KL divergence KL [ q φ( z i | x (l) 
i 

) || p( z i | x (h ) 
i 

)] , as

hown in (7) , we look in sight into the latent space obtained by

he recognition model to explore the effectiveness of the proposed

onditional prior indirectly. After the model is well trained, we

hoose two different images corresponding to a girl and a zebra,

espectively, and use the recognition model q φ( z i | x (l) 
i 

) to infer the

atent representations of the patches extracted from these images.
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Table 1 

Average PSNR (dB) with Different Model Structures on the Set14 Dataset with Scaling Factor 2. 

Different dimensions of z Different network depths Different dimensions of h 

Methods Structure PSNR Structure PSNR Structure PSNR 

PGM-UP 30 0-10 0 31.53 30 0-20 0 31.56 20 0-20 0-20 0 31.71 

30 0-20 0 31.56 30 0-30 0-20 0 31.84 30 0-30 0-20 0 31.84 

30 0-30 0 31.60 30 0-30 0-30 0-20 0 31.69 40 0-40 0-20 0 31.91 

PGM-CP 30 0-10 0 31.98 30 0-20 0 31.99 20 0-20 0-20 0 32.15 

30 0-20 0 31.99 30 0-30 0-20 0 32.26 30 0-30 0-20 0 32.26 

30 0-30 0 32.07 30 0-30 0-30 0-20 0 32.10 40 0-40 0-20 0 32.32 

Fig. 5. Histogram illustration of the 2D principle components of the latent representations drawn from the recognition model q φ( z i | x (l) 
i 

) corresponding to the patches 

extracted from the images on the right after training the model of PGM-CP. For each mode, the nearest 5 points are marked on the images using the same color. 

Table 2 

Average Test Time (Sec.) Comparison on the Set14 Dataset with Scaling Factor 2. 

Coding-based methods Regression-based methods Hybrid methods 

ScSR [8] BPFASR [21] SRCNN [39] SRCDA [30] SRGAN [34] LapSRN [50] PGM-UP PGM-CP 

130 796 0.24 0.20 2.64 1.08 0.38 0.38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Top 175 informative atoms learned with scaling factor 2 arranged according 

to the entropy in descending order. 

Fig. 7. Texture diversity comparison between all the 400 atoms of PGM-CP and all 

the 512 atoms of ScSR with scaling factor 2. 
We adopt 2D principle component analysis to observe the distri-

butions of the inferred latent representations, which are illustrated

in Fig. 5 . It is clear that the conditional prior helps the recognition

model to reveal a meaningful latent space, where patches with dif-

ferent texture are distributed apart, while patches with similar tex-

ture are distributed closely. 

In order to further demonstrate the effect of the conditional

prior on the SR performance more directly, we conduct a contrast

experiment via replacing the conditional prior with a uni-prior

N (0 , I ) , term as PGM-UP. The results listed in Tables 1 and 2 are

obtained via training the PGM-UP with the same experimental set-

ting as the PGM-CP. It can be seen that the test running time is not

influenced by the complexity of the prior distribution, because the

prior model is not utilized during the testing phase. However, the

model indeed benefits from the proposed conditional prior, thanks

to the influence of the prior model during the training phase. 

5.4. Analysis on the learned dictionary 

As a generative model, the diversity of the learned dictionary

atoms are vital to the final performance [53] , so we look insight

into the weight matrix in the last layer of the HR generative net-

work, which is equivalent to a dictionary to some extent. Fig. 6

illustrates part of the learned atoms, which show diverse meaning-

ful structures, like arc, corner, edge, point, center-surrounding, etc.

For quantitative comparison, we make histogram statistics based

on the entropy of every atom. According to Fig. 7 , the entropy val-

ues of PGM-CP have a wider range and distribute more balance,

which further validate its high diversity. 
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Fig. 8. The “zebra” image from Set14 with scaling factor 4. 
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.5. Comparison with related works 

We compare the PGM-CP with structure 40 0-40 0-20 0 with

ome state-of-the-art approaches, including Bicubic interpolation,

wo coding-based methods ScSR [8] and BPFASR [21] , and four

egression-based methods SRCNN [39] , SRCDA [30] , SRGAN [34] ,

nd LapSRN [50] . It should be noted that the SRCDA is a model that

nitialized as two coupled autoencoders and further fine-tuned as a

egression problem, which seems to be a combination of the cod-

ng and regression. That is the reason why we choose the SRCDA

or comparison. The list results are cited from the published pa-

ers, got via running the publicly available codes and from the on-

ine resources. For fair comparison, we employ the training dataset

ithout augmentation [50] nor a larger dataset like ImageNet [32] ;

oreover, the reconstructed images are evaluated without shaved,

ince their is no border effect produced by the convolutional oper-

tors like [39] and [34] . 

Firstly, the SR performances under the common scenario are

valuated based on the criteria of the PSNR, the structural simi-

arity (SSIM) [54] , and the average testing time. 

As the quantitative results shown in Table 3 , the PGM-CP yields

he competitive scores on all the three datasets. Compared with

he coding-based methods ScSR and BPFASR, the superior perfor-

ance validate the effectiveness of the nonlinear expression of the

roposed PGM-CP. Besides, although the PGM-CP is implemented

sing relatively simple networks, i.e., MLPs, have not considering

onvolutional operators, the PGM-CP achieves better scores than

he SRCNN, SRGAN, and the LapSRN, which might be attributed

o the KL divergence that can utilizing prior information. Except

or SRGAN and LapSRN that are pretrained or trained on large

atasets, all the other methods use the same training dataset as

urs. As analyzed in Section 4 , the SRCNN can be reinvented un-

er the proposed framework, but with less constrains than the

GM-CP. As the comparison shown in Table 4 , unlike SRCNN that

eed large dataset in exchange for better performance, the PGM-CP
an achieve comparable performance with relatively smaller set of

raining data, because the PGM-CP is a probabilistic model where

he priors bring more constraints than those deterministic models.

As the visual comparisons shown in Figs. 8 and 9 , the PGM-CP

roduces images with sharp edges and without any obvious arti-

acts. Note that although the reconstructed zebra of SRGAN looks

harper than ours, the SRGAN is more likely to produce artifacts,

s shown in Fig. 8 . More visual results can be found in Appendix I.

The average testing time of each image on the whole dataset

ith scaling factor 2 is shown in Table 2 . Except that the ScSR

nd BPFASR are evaluated with 3.6GHz CPU, all the other meth-

ds are evaluated with Tesla K40 GPU, since both of ScSR and

PFASR need iterative inference during the test, which barriers

heir testing stage to be parallelized. In contrast, with the com-

ination of the recognition model and the generative model, the

roposed PGM-CP realizes the SR process through an efficient for-

ard mapping. Besides, further acceleration is realized via process-

ng patches in parallel. Thus, the proposed PGM-CP accelerates the

esting speed, compared with those coding-based methods. In ad-

ition, the PGM-CP is comparable with regression-based methods

nd superior than the SRGAN and the LapSRN which are built upon

 much deeper network. 

In order to assess the robustness of these methods, a more

hallenging scenario is used, where the test images are corrupted

y zero-mean Gaussian noise with different standard deviations.

iven the noisy images, we iteratively perform the following steps

efore image super-resolution: (1) using the recognition model and

R generative model to obtain a reconstructed LR image; (2) using

he reconstructed LR image as the input for the next round. Since

heir is no available well-learned model provided by the authors

n [34] , and the generative adversarial network is hard to train,

or fair comparisons, here we do not evaluate the robustness of

he SRGAN. Basically, according to the results in Figs. 10 and 11 ,

he coding-based methods ScSR and BPFASR show superior per-

ormance than the regression-based methods, SRCNN, SRCDA, and
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Fig. 9. The “woman” image from Set5 with scaling factor 4. 

Fig. 10. The noisy “butterfly” from Set5 with scaling factor 2. The standard deviation of the Gaussian noise is 0.04. 
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Table 3 

Average PSNR (dB) and SSIM on the Set5, the Set14, and the BSD100. 

Scale Bicubic ScSR BPFASR SRCNN 

a SRCDA SRGAN 

b LapSRN PGM-CP 

[8] [21] [39] [30] [34] [50] 

Set5 2 PSNR 33.68 35.27 35.23 36.31 36.40 – 34.72 36.75 

SSIM 0.9305 0.9450 0.9437 0.9527 0.9531 – 0.9390 0.9553 

3 PSNR 30.40 31.42 31.38 32.34 32.61 – – 32.86 

SSIM 0.8685 0.8821 0.8822 0.9035 0.9083 – – 0.9103 

4 PSNR 28.43 29.51 29.24 30.03 30.32 29.40 29.83 30.51 

SSIM 0.8107 0.8383 0.8241 0.8530 0.8613 0.8472 0.8559 0.8632 

Set14 2 PSNR 30.00 31.34 31.25 31.81 31.96 – 31.29 32.32 

SSIM 0.8693 0.8963 0.8967 0.9044 0.9039 – 0.8948 0.9074 

3 PSNR 27.32 28.30 28.09 28.65 28.82 – – 29.15 

SSIM 0.7746 0.8104 0.8015 0.8152 0.8194 – – 0.8205 

4 PSNR 25.78 26.49 26.38 26.86 26.90 26.02 26.55 27.23 

SSIM 0.7031 0.7348 0.7256 0.7421 0.7450 0.7397 0.7471 0.7486 

BSD100 2 PSNR 29.57 30.77 30.56 31.11 30.43 – – 31.39 

SSIM 0.8440 0.8744 0.8687 0.8835 0.8668 – – 0.8868 

3 PSNR 27.22 27.72 27.53 28.20 28.04 – – 28.46 

SSIM 0.7399 0.7647 0.7531 0.7794 0.7749 – – 0.7844 

4 PSNR 25.99 26.61 26.49 26.70 26.68 25.16 – 27.01 

SSIM 0.6695 0.6983 0.6872 0.7018 0.7042 0.6688 – 0.7105 

a The well-learned models of SRCNN are available at http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html . 
b The reconstructed images of SRGAN are available at https://twitter.box.com/s/lcue6vlrd01ljkdtdkhmfvk7vtjhetog . 

Table 4 

Results on different training datasets with scaling factor 2. 

Methods SRCNN SRCNN PGM-CP 

Training datasets ImageNet 91 Images 91 Images 

Criteria PSNR SSIM PSNR SSIM PSNR SSIM 

Set5 36.66 0.9542 36.31 0.9527 36.75 0.9553 

Set14 32.45 0.9067 31.81 0.9044 32.32 0.9074 

BSD100 31.32 0.8851 31.11 0.8835 31.39 0.8868 

Fig. 11. Mean PSNR comparison on Set5 with scaling factor 2 in the presence of 

Gaussian noise. 
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apSRN. Although the SRCDA is pre-trained as two coupled au-

oencoders, the model is further fine-tuned as a regression model

hat destroys the expression of the latent space to well reconstruct

he LR images. In addition, the latent representations in SRCNN,
RCDA, and LapSRN are deterministic, which lack of randomness

o model the noise. Thus, with noisy input for the forward map-

ing, the noise are aggravated and results in poor performance

ven worse than Bicubic interpolation. On the contrary, the coding-

ased methods ScSR and BPFASR can moderately eliminate the

oise due to the sparse reconstruction of the LR images. As shown

n Fig. 10 , the PGM-CP has the ability to reconstruct an LR image

nd get rid of noise. Based on such clean input, the HR genera-

ive model reconstruct a clean HR image with shaper edges, which

erforms better than ScSR and BPFASR. As summarized in Fig. 11 ,

s the distortion level increases, the performance differences be-

ween the coding-based methods and the regression-based meth-

ds become more apparent. More visual comparisons can be found

n Appendix II. 

. Conclusion 

In this paper, a general variational probabilistic generative

ramework parameterized by deep network is proposed for single

mage SR, which combines the strengths of coding-based methods

nd regression-based methods. We use our framework as a guid-

nce to develop a new model called PGM-CP, with the help of an

nformative conditional prior and a consistent recognition model.

he PGM-CP has shown superior SR performance than state-of-the-

rt methods, faster inference than previous coding-based methods,

nd more robust to noise than regression-based methods. 
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erent scaling factors. 
Appendix I 

This section presents several visual comparison results with diff
Fig. 12. The “flowers” image from Set14 with scaling factor 4. 

Fig. 13. The “baby” image from Set5 with scaling factor 3. 
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Fig. 14. The “bird” image from Set5 with scaling factor 3. 

Fig. 15. The “pepper” image from Set14 with scaling factor 2. 

Fig. 16. The “lenna” image from Set14 with scaling factor 2. 

A

erent noise level. 
ppendix II 

This section presents several visual comparison results with diff
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Fig. 17. The noisy “bird” from Set5 with scaling factor 2. The standard deviation of the Gaussian noise is 0.06. 

Fig. 18. The noisy “baby” from Set5 with scaling factor 2. The standard deviation of the Gaussian noise is 0.02. 
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