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Abstract. We consider the problem of video snapshot compressive imag-
ing (SCI), where multiple high-speed frames are coded by different masks
and then summed to a single measurement. This measurement and the
modulation masks are fed into our Recurrent Neural Network (RNN)
to reconstruct the desired high-speed frames. Our end-to-end sampling
and reconstruction system is dubbed BIdirectional Recurrent Neural
networks with Adversarial Training (BIRNAT). To our best knowl-
edge, this is the first time that recurrent networks are employed to S-
CI problem. Our proposed BIRNAT outperforms other deep learning
based algorithms and the state-of-the-art optimization based algorith-
m, DeSCI, through exploiting the underlying correlation of sequential
video frames. BIRNAT employs a deep convolutional neural network
with Resblock and feature map self-attention to reconstruct the first
frame, based on which bidirectional RNN is utilized to reconstruct the
following frames in a sequential manner. To improve the quality of the
reconstructed video, BIRNAT is further equipped with the adversarial
training besides the mean square error loss. Extensive results on both
simulation and real data (from two SCI cameras) demonstrate the su-
perior performance of our BIRNAT system. The codes are available at
https://github.com/BoChenGroup/BIRNAT.

Keywords: Snapshot compressive imaging, compressive sensing, deep
learning, convolutional neural networks, recurrent neural network.

1 Introduction

Videos are essentially sequential images (frames). Due to the high redundancy
in these frames, a video codec [25] can achieve a high (> 100) compression rate

? corresponding author.
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Fig. 1. Selected reconstructed frames using state-of-the-art methods, where DeSCI is
an optimization algorithm, ADMM-net and U-net are based on CNNs and BIRNAT
(ours) is based on RNNs. Left: simulation data Vehicle, the evaluation metric PSNR
(in dB) is 23.62 (ADMM-net), 27.04 (DeSCI), 26.43 (U-net) and 27.84 (BIRNAT).
Right: Real data from CACTI [23]. The testing time is reported at the bottom row.

for a high-definition video. Two potential problems exist in this conventional
sampling plus compression framework: i) the high-dimensional data has to be
captured and saved, which requires a significant amount of memory and power; ii)
the codec, though efficient, introduces latency for the following transmission. To
address the first challenge, one novel idea is to build an optical encoder, i.e., com-
pressing the video during capture. Inspired by the compressive sensing (CS) [5,
6], video snapshot compressive imaging (SCI) [13, 23, 36] was proposed aiming
to provide a promising solution of this optical encoder. The underlying princi-
ple is to modulate the video frames with a higher speed than the capture rate
of the camera. With knowledge of modulation, high-speed video frames can be
reconstructed from each single measurement by using advanced algorithms [53].
It has been shown that 148 frames can be recovered from a single measuremen-
t in the coded aperture compressive temporal imaging (CACTI) system [23].
With this optical encoder in hand, another challenge, namely an efficient de-
coder is also required to make the video SCI system being practical. Previous
algorithms are usually based on iterative optimization, which needs a long time
(even hours [22]) to provide a good result. Inspired by deep learning, there are
some research attempting to employ convolutional neural networks (CNNs) to
reconstruct the high-speed scene from the SCI measurements [15, 26, 34, 35, 51,
54]. Though the testing speed is promising (tens of milliseconds), none of them
can outperform the state-of-the-art optimization algorithm, namely DeSCI [22]
on both simulation and real data. Please refer to Fig. 1 for a brief comparison.

Bearing these concerns in mind, in order to achieve high-quality reconstructed
videos in a short time, this paper aims to develop an end-to-end deep network
to reconstruct high quality images for video SCI, specifically, by investigating
the spatial correlation via an attention based CNN with Resblock (AttRes-CNN)
and temporal correlation via a Bidirectional Recurrent Neural Network.

1.1 Video Snapshot Compressive Imaging

As shown in Fig. 2, in video SCI, a dynamic scene, modeled as a time-series of
two-dimensional (2D) images, passes through a dynamic aperture which applies
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Fig. 2. Principle of video SCI (left) and the proposed BIRNAT for reconstruction
(middle). A dynamic scene, shown as a sequence of images at different timestamps ([t1,
t2, ..., tB ], top-left), passes through a dynamic aperture (bottom-left), which imposes
individual coding patterns. The coded frames after the aperture are then integrated
over time on a camera, forming a single-frame compressed measurement (middle). This
measurement along with the dynamic masks are fed into our BIRNAT to reconstruct
the time series (right) of the dynamic scene.

timestamp-specified spatial coding. In specific, the value of each timestamp-
specified spatial coding is superposed by a random pattern and thus the spatial
coding of each two timestamps are different (a shifting binary pattern was used
in [23]) from each other. The coded frames after the aperture are then integrated
over time on a camera, forming a compressed coded measurement. Given the cod-
ing pattern for each frame, the time series of the scene can be reconstructed from
the compressed measurement through iterative optimization based algorithms,
which have been developed extensively before. Based on this idea, different video
SCI systems have been built in the literature. The modulation approach can be
categorized into spatial light modulator (SLM) (including digital micromirror
device (DMD)) [13, 35, 36, 40] and physical mask [23, 55]. However, one common
bottleneck to preclude the wide applications of SCI is the slow reconstruction
speed and poor reconstruction quality. Recently, the DeSCI algorithm, proposed
in [22] has led to state-of-the-art results. However, the speed is too slow due
to the inherent iterative strategy; it needs about 2 hours to reconstruct eight
frames of size 256× 256 pixels (Fig. 1 left) from a snapshot measurement, which
makes it impractical for real applications.

Motivated by the recent advances of deep learning, one straightforward way is
to train an end-to-end network for SCI inversion, with an off-the-shelf structure
like U-net [37], which has been used as the backbone of the design for several
inverse problems [1, 27, 28, 30, 35]. This was also our first choice but it turned
out that a single U-net cannot lead to good results as shown in Fig. 1 since
it fails to consider the inherent temporal correlation within in video frames for
video SCI. Aiming to fill this research gap, in this paper, we propose a Recurrent
Neural Network (RNN) based network dubbed BIdirectional Recurrent Neural
networks with Adversarial Training (BIRNAT) for video SCI reconstruction.
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1.2 Related Work

For SCI problems, the well established algorithms include TwIST [2], GAP-
TV [52] and GMM [16, 49], where different priors are used. As mentioned before,
the DeSCI algorithm [22] has led to state-of-the-art results for video SCI. DeSCI
applies the weighted nuclear norm minimization [10] of nonlocal similar patch-
es in the video frames into the alternating direction method of multipliers [3]
regime. Inspired by the recent advances of deep learning on image restoration [47,
59], researchers have started using deep learning in computational imaging [15,
21, 26, 30, 35, 48, 57]. Deep fully-connected neural network was used for video C-
S in [15] and most recently, a deep tensor ADMM-net was proposed in [26] for
video SCI problem. A joint optimization and reconstruction network was trained
in [51] for video CS. The coding patterns used in [15] is a repeated pattern of
a small block; this is not practical in real imaging systems and only simulation
results were shown therein. The real data quality shown in [51] is low. The deep
tensor ADMM-net [26] employs deep-unfolding technique [38, 50] and limited
results were shown.

To fill the gap of speed and quality for video SCI reconstruction, this paper
develop an RNN based network. Intuitively, the desired high-speed video frames
are strongly correlated and a network to fully exploit this correlation should
improve the reconstructed video quality. RNNs, originally developed to capture
temporal correlations for text and speech, e.g., [9, 14], are becoming increasingly
popular for video tasks, such as deblurring [32], super-resolution [11, 31] and
object segmentation [45]. Although these works achieve high performance in
their tasks, how to use RNN to build a unified structure for SCI problems still
remains challenging.

1.3 Contributions and Organization of This Paper

In a nutshell, we build a new reconstruction framework (BIRNAT) for video SCI
and specific contributions are summarized as follows:

1) We build an end-to-end deep learning based reconstruction regime for video
SCI reconstruction and use RNN to exploit the temporal correlation.

2) A CNN with Resblock [12] is proposed to reconstruct the first frame as a
reference for the reconstruction of following frames by RNN. Considering
the limitation of convolution in CNN only extracting the local dependencies,
we equip it with a self-attention module to capture the global (non-local)
spatial dependencies, resulting in AttRes-CNN.

3) Given the reconstruction of the first frame, a Bidirectional RNN is developed
to sequentially infer the following frames, where the backward RNN refines
the results of the forward RNN to improve the reconstructed video further.

4) This dual-stage framework is jointly trained via combining mean square error
(MSE) loss and adversarial training [7] to achieve good results.

5) We apply our model on the six benchmark simulation datasets and it pro-
duces 0.59dB higher PSNR than DeSCI on average. We further verify our
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BIRNAT on real datasets captured by the CACTI camera and another cam-
era [35]. It shows competitive, sometimes higher performance than DeSCI
but with > 30, 000 times shorter inference time.

The rest of this paper is organized as follows. Sec. 2 present the mathematical
model of video SCI. The proposed BIRNAT is developed in Sec. 3. Simulation
and real data results are reported in Sec. 4 and Sec. 5 concludes the entire paper.

2 Mathematical Model of Video SCI

Recalling Fig. 2, we assume that B high-speed frames {Xk}Bk=1 ∈ Rnx×ny are
modulated by the coding patterns {Ck}Bk=1 ∈ Rnx×ny , correspondingly. The
measurement Y ∈ Rnx×ny is given by

Y =
∑B

k=1 Xk �Ck + G , (1)

where � denotes the Hadamard (element-wise) product and G represents the
noise. For all B pixels (in the B frames) at position (i, j), i = 1, . . . , nx; j =
1, . . . , ny, they are collapsed to form one pixel in the snapshot measurement as

yi,j =
∑B

k=1 ci,j,kxi,j,k + gi,j . (2)

Define x =
[
x>1 , . . . ,x

>
B

]
, where xk = vec(Xk), and let Dk = diag(vec(Ck)),

for k = 1, . . . , B, where vec( ) vectorizes the matrix inside ( ) by stacking the
columns and diag( ) places the ensured vector into the diagonal of a diagonal
matrix. We thus have the vector formulation of the sensing process of video SCI:

y = Φx+ g , (3)

where Φ ∈ Rn×nB is the sensing matrix with n = nxny, x ∈ RnB is the desired
signal, and g ∈ Rn again denotes the vectorized noise. Unlike traditional CS [5],
the sensing matrix considered here is not a dense matrix. In SCI, the matrix Φ
in (3) has a very special structure and can be written as

Φ = [D1, . . . ,DB ] , (4)

where {Dk}Bk=1 are diagonal matrices. Therefore, the compressive sampling rate
in SCI is equal to 1/B. It has recently been proved that high quality reconstruc-
tion is achievable when B > 1 [18, 19].

3 Proposed Network for Reconstruction

Having obtained the measurement Y and coding patterns {Ck}Bk=1, BIRNAT is

developed to predict the high-speed frames {X̂k}Bk=1, which are also regarded as
the reconstructions of real high-speed frames {Xk}Bk=1. In this section, we will
introduce each module of the proposed BIRNAT, including a novel measure-
ment preprocessing method in Sec. 3.1, an attentional resblock based CNN to
reconstruct the first (reference) frame in Sec. 3.2, and a bidirectional RNN to
sequentially reconstruct the following frames in Sec. 3.3. Combining adversarial
training and MSE loss, BIRNAT is trained end-to-end as described in Sec. 3.4.
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Fig. 3. Left: the proposed preprocessing approach to normalize the measurement. We
fed the concatenation of normalization measurement Y and {Y � Ck}Bk=1 into the
proposed BIRNAT. Middle: the specific structure of BIRNAT including i) the attention

based CNN (AttRes-CNN) to reconstruct the first frame X̂f
1 ; ii) forward RNN to
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B
k=2; iii) backward RNN to perform

reverse-order reconstruction {X̂b
k}1k=B−1. Right: details of AttRes-CNN and RNN cell.

C denotes concatenation along the channel dimension. The numbers in the AttRes-
CNN and RNN cell denote the numbers of channels in each feature map.

3.1 Measurement Energy Normalization

Recapping the definition of measurement Y in (1), it is a weighted ({Ck}Bk=1)
summation of the high-speed frames {Xk}Bk=1. As a result, Y is usually a non-
energy-normalized image. For example, some pixels in Y may gather only one-
or two-pixel energy from {Xk}Bk=1, while some ones may gather B − 1 or B.
Thus, it is not suitable to directly feed Y into a network, which motivates us to
develop a measurement energy normalization method depicted in Fig. 3 (left).

To be concrete, we first sum all coding patterns {Ck}Bk=1 to achieve the

energy normalization matrix C
′

as

C
′

=
∑B

k=1 Ck , (5)

where each element in C
′

describes how many corresponding pixels of {Xk}Bk=1

are integrated into the measurement Y. Then we normalize the measurement Y
by C

′
to obtain the energy-normalization measurement Y as

Y = Y �C
′
, (6)

where � denotes the matrix dot (element-wise) division. From Fig. 3 and the
definition of Y, it can be observed obviously that Y owns more visual infor-
mation than Y. Meanwhile, Y can be regarded as an approximate average of
the high-speed frames {Xk}Bk=1, preserving the motionless information such as
background and motion trail information.

3.2 AttRes-CNN

In order to initiate RNN, a reference frame is required. Towards this end, we
propose a ResBlock [12] based deep CNN for the first frame (X̂1) reconstruc-
tion. Aiming to fuse all the visual information in hand including our proposed
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normalization measurement Y and the coding patterns {Ck}Bk=1, we take the
concatenation as:

E = [Y ,Y �C1 ,Y �C2 , ...Y �CB ]3 ∈ Rnx×ny×(B+1), (7)

where [ ]3 denotes the concatenation along the 3rd dimension. Note that {Y �
Ck}Bk=1 are used here to approximate the real mask-modulated frames {Xk �
Ck}Bk=1. After this, E is fed into a deep CNN (Fig. 3 top-right) consisting two
four-layer sub-CNNs (Fcnn1 and Fcnn2), one three-layer ResBlock (Fresblock1),
and one self-attention module [43] (Fatten) as

X̂1 = Fcnn2(L3), L3 = Fatten(L2), L2 = Fresblock1(L1), L1 = Fcnn1(E), (8)

where, Fcnn1 is used to fuse different visual information in E to achieve feature
L1; Fresblock1 is employed to further capture the spatial correlation when going
deeper, and also to alleviate the gradient vanishing; Fcnn2, whose structure is
mirror symmetry with Fcnn1, is used to reconstruct the first frame X̂1 of the
desired video, and Fatten is developed to capture long-range dependencies (e.g.,
non-local similarity), discussed as follows.

Self-attention module. Note that the traditional CNN is only able to capture
local dependencies since the convolution operator in CNN has a local receptive
field, while in images/videos, non-local similarity [4] is generally used to improve
the restoration performance. To explore the non-local information in networks,
we employ a self-attention module [44] to capture the long range dependen-
cies [30] among regions to assist our first frame reconstruction.

We perform the self-attention over the pixels of feature map output from
Fresblock1, denoted by L2 ∈ Rhx×hy×b, where hx, hy and b represents the length,
width and number of channel in the feature map L2, respectively. By imposing
1× 1 convolution on L2, we obtain the query Q, key K and value V matrix as

Q = w1 ∗ L2, K = w2 ∗ L2, V = w3 ∗ L2, (9)

where {w1,w2} ∈ R1×1×b×b′ and w3 ∈ R1×1×b×b with the fourth dimension
representing the number of filters (b′ for {w1,w2} and b for w3), {Q,K} ∈
Rhx×hy×b′ , V ∈ Rhx×hy×b, ∗ represents convolutional operator. Q, K and V
are then reshaped to Q′ ∈ Rhxy×b′ , K′ ∈ Rhxy×b′ and V′ ∈ Rhxy×b, where
hxy = hx × hy, which means we treat each pixel in the feature map L2 as a
“token”, whose feature is 1 × b′. After that we construct the attention map

A ∈ Rhxy×hxy with element aj,i defined by aj,i =
exp(si,j)∑hxy

j=1 exp(si,j)
, where si,j is

the element in the matrix S = Q′K′T ∈ Rhxy×hxy . Here aj,i represents that the
extent of the model depends on the ith location when generating the jth region.
Having obtained the attention map A, we can impose it on the value matrix V′

to achieve the self-attention feature map L′3 as

L′3 = reshape(AV′) ∈ Rhx×hy×b, (10)
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where reshape() reshapes the 2D matrix AV′ ∈ Rhxy×b′ to the 3D matrix. Lastly,
we multiply the self-attention feature map L′3 by a scale learnable parameter λ
and add it back to the input feature map L2 [30], leading to the final result

L3 = L2 + λL′3. (11)

Recapping the reconstruction process of the first frame in (8), it can be
regarded as a nonlinear combination of Y and {Y � Ck}Bk=1. After obtaining

the first frame X̂1, we use it as a base to reconstruct the following frames by our
next proposed sequential model. Therefore, it is important to build the ResBlocks
based deep CNN to obtain a good reference frame.

3.3 Bidirectional Recurrent Reconstruction Network

After getting the first frame X̂1 via the AttRes-CNN, we now propose a bidirec-
tional RNN to perform the reconstruction of the following frames {X̂k}Bk=2 in a
sequel manner. The overall structure of BIRNAT is described in Fig. 3, and we
give detailed discussion below.

The Forward RNN: The forward RNN takes X̂1 as the initial input, fusing
different visual information at corresponding frames to sequentially output the
forward reconstruction of other frames {X̂f

k}Bk=2 (the superscript f denotes ‘for-
ward’). For simplicity, in the following description, we take the frame k as an
example to describe the RNN cell, which is naturally extended to each frame.

Specifically, at frame k where k = 2, · · · , B, a fusion block, including two
parallel six-layer CNNs Fcnn3 and Fcnn4, is used to fuse the visual information
of the reconstruction at the (k − 1)th frame X̂f

k−1, and a reference image at the

kth frame Rk as

zfi,k =
[
zfx,k, z

f
r,k

]
3
, zfx,k = Fcnn3(X̂f

k−1), zfr,k = Fcnn4(Rf
k), (12)

where X̂f
k−1 and Rf

k are fed into each CNN-based feature extractor to achieve

zfx,k and zfr,k respectively, which are then concatenated as the fused image feature

zfi,k. The reference image at the kth frame, Rf
k , is acquired by

Rf
k =

[
Y,Y −

∑k−1
t=1 Ct � X̂f

t −
∑B

t=k+1 Ct �Y
]
3
. (13)

Recalling the definition of measurement Y in (1), the second item in (13) can be
seen as an approximation of Ck�Xk. This is due to the reason that the predicted
frames X̂f

t before k and our proposed normalization measurement Y after k are
used to approximate the corresponding real frames Xk. Basically, considering
the approximation of X̂f

k should be more accurate than Y, the second item in
(13) is going closer to the real Ck �Xk. This is one of the motivation that we
build the backward RNN in the following subsection. Furthermore, comparing
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the second item on the current frame, the first item Y in (13) contains more
consistent visual information over the consecutive frames, such as background.
Thus, we put Y in the Rf

k to help the model reconstruct smoother video frames.

Having obtained zfi,k, it is concatenated with the features zfh,k extracted from

the hidden units hf
k−1 (we initialize h1 with zero), to get the fused features gfk

gfk = [zfi,k, z
f
h,k]3, zfh,k = Fcnn5(hf

k−1), (14)

where Fcnn5 is another cnn-based feature extractor. After that, gfk is fed into a

two-layer ResBlock to achieve the hidden units hf
k at frame k as

hf
k = Fresblock2(gfk), (15)

which is then used to generate the forward reconstruction X̂f
k by a CNN as

X̂f
k = Fcnn6(hf

k), (16)

where Fcnn6 is a six-layer CNN. As a result, the current reconstructed frame X̂f
k

and hidden units hf
k are transported to the same cell to sequentially generate

the next frame, until we get the last reconstructed frame X̂f
B . Finally, we can

get the reconstruction of forward RNN {X̂f
k}Bk=1 (we regard the construction of

first frame X̂1 from CNN in (8) as X̂f
1 ).

Although the forward RNN is able to achieve appealing results (refer to
Table 1), it ignores the sequential information in a reverse order, which has been
widely used in natural language processing [17]. Besides, we observe that the
performance of forward RNN improves as k goes from 1 to B. We attribute
it to the following two reasons: i) the latter frame uses more information from
reconstructed frames; ii) the approximation of the second item in (13) are more
accurate. Based on these observations, we add the backward RNN to improve
the performance of reconstruction further, especially for the front frames.

The Backward RNN: The backward RNN takes X̂f
B and hf

B as input to

sequentially output the backward reconstruction of each frame {X̂b
k}1k=B−1 (the

superscript b denotes the backward). At frame k, the structure of backward RNN
cell is similar to the forward one, with a little difference on the inputs of each
cell. Referring to Fig. 3 and the description of the forward RNN above, in the
following, we only discuss the difference between backward and forward RNN.

The first difference is the second item in (12). Due to the opposite order to
the forward RNN, at frame k, the backward RNN will use the reconstruction of
frame k + 1. The corresponding networks of (12) for backward RNN are thus
changed to

zbi,k = [zbx,k, z
b
r,k]3, zbx,k = Fcnn3(X̂b

k+1), zbr,k = Fcnn4(Rb
k). (17)

The second difference is the definition of backward reference image Rb
k. Ac-

cording to the definition of Rf
k in (13) at frame k, since the reconstruction of
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frames after k are not obtained, we have to use the normalization measurement
Y to approximate them. In backward RNN, it is natural to use each reconstruc-
tion from forward RNN {X̂f

k}Bk=1 directly as

Rb
k =

[
Y,Y −

∑1
t=B,t6=k Ct � X̂f

t

]
3
, (18)

where the first item Y is retained to memory its visual information and help the
backward RNN to improve the performance.

The networks used in forward and backward RNN do not share the parame-
ters but have the same structure. Another important difference is that the hidden
units hf

1 are set to zeros in the forward RNN, while the hidden units hb
B are set

to hf
B in the backward RNN. This change builds a closer connection between

forward and backward RNN and provides more information for backward RNN.

3.4 Optimization

BIRNAT contains four modules: i) the measurement energy normalization, i-
i) AttRes-CNN, iii) the forward RNN and iv) the backward RNN. Except for
i), other modules have their corresponding parameters. Specifically, all learn-
able parameters in BIRNAT are denoted by Θ = {Wc,Wf ,Wb}, where Wc =
{Wc

cnn1,W
c
cnn2,W

c
resblock1,W

c
attn} are the parameters of the AttRes-CNN; Wf =

{Wf
cnn3,W

f
cnn4,W

f
cnn5,W

f
cnn6,W

f
resblock2} are the parameters of forward RN-

N; Wb = {Wb
cnn3,W

b
cnn4,W

b
cnn5,W

b
cnn6,W

b
resblock2} are the parameters of

backward RNN. In the following, we will introduce how to jointly learn them at
the training stage and use the well-learned parameters at the testing stage.

Learning Parameters at the Training Stage. At the training stage, be-
sides measurement and the coding patterns {Yn, {Cn,k}Bk=1}Nn=1 for N training
videos, the real frames {{Xn,k}Bk=1}Nn=1 are also provided as the supervised sig-
nal. In order to minimize the reconstruction error of all the frames, the mean
square error is used as the loss function

L =
∑N

n=1 αLf
n + Lb

n, (19)

Lf
n =

∑B
k=1 ||X̂

f
n,k −Xn,k||22, Lb

n =
∑1

k=B−1 ||X̂b
n,k −Xn,k||22, (20)

where Lf
n and Lb

n represent the MSE loss of forward and backward RNN, re-
spectively, and α is a trade-off parameter, which is set to 1 in our experiments.

To further improve the quality of each reconstructed frames and make the
generated video smoother, we introduce the adversarial training [8] in addi-
tion to the MSE loss in (19). To be more specific, the input video frames

{Xn,k}N,B
n=1,k=1 are treated as “real” samples, while the reconstructed frames

[{X̂b
n,k}

N,B−1
n=1,k=1, {X̂

f
n,B}Nn=1]3, generated from previous networks, are assumed

as the “fake” samples. The adversarial training loss can be formulated as

Lg = EX[logD(X)] + EY[log(1−D(G(Y, {Ck}Bk=1)))], (21)
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Table 1. The average results of PSNR in dB (left entry) and SSIM (right entry) and
running time per measurement/shot in seconds by different algorithms on 6 datasets.
Best results are in red and bold, second best results are blue underlined.

Dataset Kobe Traffic Runner Drop Aerial Vehicle Average Running time

GAP-TV [52] 26.45 0.8448 20.89 0.7148 28.81 0.9092 34.74 0.9704 25.05 0.8281 24.82 0.8383 26.79 0.8576 4.2
DeSCI [22] 33.25 0.9518 28.72 0.9250 38.76 0.9693 43.22 0.9925 25.33 0.8603 27.04 0.9094 32.72 0.9347 6180
U-net [35] 27.79 0.8071 24.62 0.8403 34.12 0.9471 36.56 0.9494 27.18 0.8690 26.43 0.8817 29.45 0.8824 0.0312

PnP-FFDNet [54] 30.50 0.9256 24.18 0.8279 32.15 0.9332 40.70 0.9892 25.27 0.8291 25.42 0.8493 29.70 0.8924 3.0

BIRNAT
w/o SA&AT&BR

31.06 0.9158 27.17 0.9198 36.62 0.9674 40.67 0.9802 28.40 0.9103 27.24 0.9125 31.86 0.9343 0.0856

BIRNAT
w/o SA&AT

32.18 0.9168 28.93 0.9298 38.06 0.9716 42.10 0.9889 28.95 0.9092 27.68 0.9173 32.98 0.9389 0.1489

BIRNAT
w/o AT

32.66 0.9490 29.30 0.9418 38.25 0.9748 42.08 0.9914 28.98 0.9163 27.79 0.9234 33.18 0.9494 0.1512

BIRNAT
w/o SA

32.27 0.9341 28.99 0.9391 38.44 0.9753 42.22 0.9916 29.00 0.9170 27.74 0.9233 33.11 0.9467 0.1489

BIRNAT 32.71 0.9504 29.33 0.9422 38.70 0.9760 42.28 0.9918 28.99 0.9166 27.84 0.9274 33.31 0.9507 0.1647

where G is the generator which outputs reconstructed video frames, and D is
the discriminator that has same structure with [29]. As a result, the final loss
function of our model is

L =
∑N

n=1(αLf
n + Lb

n) + βLg, (22)

where β is a trade-off parameter. In the experiments, β is set to 0.001.

Performing SCI Reconstruction at the Testing Stage. During testing,
with the well-learned network parametersΘ, we can achieve the frames {X̂f

k}Bk=1

and {X̂b
k}1k=B−1. Considering the advantages of backward RNN that uses a good

visual features generated by the forward RNN, we use the reconstructed frame
1 to B − 1 from backward RNN, and frame B from forward RNN to construct
the final reconstruction of our system, that is [{X̂b

k}
B−1
k=1 , X̂

f
B ]3. Note that our

proposed BIRNAT can also be used in other SCI systems [24, 39, 41, 42, 56, 58].

4 Experiments

In this section, we compare BIRNAT with several state-of-the-art methods on
both simulation and real datasets.

4.1 Training, Testing Datasets and Experimental Settings

Datasets: Considering the following two reasons: i) the video SCI reconstruc-
tion task does not have a specific training set; ii) the SCI imaging technology is
suitable for any scene, we choose the dataset DAVIS2017 [33], originally used in
video object segmentation task as the training set. We first evaluate BIRNAT on
six simulation datasets including Kobe, Runner, Drop, Traffic [22], Aerial
and Vehicle [26]. After that, we also evaluate BIRNAT on several real datasets
captured by real video SCI cameras [23, 35].
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Ground Truth

GAP-TV

DeSCI

BIRNAT

U-net

Aerial #3 Vehicle #12Drop #8Kobe #8 Runner #4Traffic #16

PnP-FFDNet

Fig. 4. Reconstructed frames of GAP-TV, DeSCI, U-net and BIRNAT on six simulated
video SCI datasets. Please watch the full video in the SM for details.

Implementation Details of BIRNAT: Following the setting in [22], eight
(B = 8) sequential frames are modulated by the shifting binary masks {Ck}Bk=1

and then collapsed into a single measurement Y. We randomly crop patch cubes
256×256×8 from original scenes in DAVIS2017 and obtain 26,000 training data
pairs with data augmentation. Our model is trained for 100 epochs in total.
Starting with the initial learning rate of 3×10−4, we reduce the learning rate by
10% every 10 epochs, and it costs about 3 days for training the entire network.
The Adam optimizer [20] is employed for the optimization. All experiments are
run on the NVIDIA RTX 8000 GPU based on PyTorch. The detailed architecture
for BIRNAT is given in the supplementary material (SM).

Counterparts and Performance Metrics: As introduced above, various
methods have been proposed for SCI reconstruction. Hereby we compare our
model with three competitive counterparts. The first one GAP-TV [52] is a wide-
ly used efficient baseline with decent performance. The second one DeSCI [22]
currently produces state-of-the-art results. For the results of other algorithms,
please refer to [22]. In order to compare with the deep learning based methods,
we repurposed U-net to SCI tasks as in [35], where the CNN is employed to
capture local correlations in an end-to-end manner. We further compare with
the most recent plug-and-play (PnP) algorithm proposed in [54].
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For the simulation datasets, both peak-signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [46] are used as metrics to evaluate the perfor-
mance. Besides, to see whether they can be applied to a real-time system, we
give the running time of reconstructing the video at the testing stage.

4.2 Results on Simulation Datasets

The performance comparisons on the six benchmark datasets are given in Ta-
ble 1, using different algorithms, i.e. GAP-TV, DeSCI, U-net and various ver-
sions of BIRNAT without self-attention (denoted as ‘w/o SA’) or adversarial
training (‘w/o AT’) or backward RNN (‘w/o BR’). It can be observed that:
i) BIRNAT outperforms DeSCI on the Traffic(0.61dB), Aerial(3.66dB) and
Vehicle(0.80dB) by the metric PSNR. Obviously, BIRNAT can provide su-
perior performance on the datasets with complex background, owning to the
non-local features obtained with self-attention and the sequential dependencies
constructed by RNN; ii) DeSCI only improved a little bit over BIRNAT on the
Kobe(0.54dB), Runner(0.06dB) and Drop(0.94dB), since there are high-speed
motions of specfic objects in those three datasets, which are rarely found in
the training data. The ADMM-net [26] used different training sets for different
testing sets and it only shows the results on Kobe(30.15dB), Aerial(26.85dB)
and Vehicle(23.62dB), which are inferior to those of BIRNAT. BIRNAT gets
leading average performance on these six datasets both for PSNR and SSIM; iii)
BIRNAT achieves 30000 times speedups over DeSCI at the testing stage; iv) the
attention mechanism and adversarial training are beneficial to performance.

Runner  #1Drop #1 Aerial #1Kobe #1

Fig. 5. Selected attention maps of the first frame. Yellow points denote the pixels
randomly selected from each image, and red areas denote the active places.

Fig. 4 shows selected reconstructed frames of BIRNAT on these six dataset-
s compared with GAP-TV, DeSCI and our repurposed U-net. We can observe
that while DeSCI smooths out the details in the reconstructed video, BIRNAT
provides sharper borders and finer details, owning to the better interpolation
with both spatial and temporal information extracted by CNN and Bidirection-
al RNN. To further explore the influence of attention mechanism, we illustrate
the attention map in Fig. 5, where we plot the attended active areas (highlight-
ed red color) of a randomly selected pixel. It can be seen that those non-local
regions in red color are corresponding to the highly semantically related areas.
These attention-aware features can provide long range spatial dependencies a-
mong pixels, which is helpful for the first frame reconstruction and gives a better
basement for generating the following frames.
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Water Balloon  
512 × 512

Chopper Wheel
256 × 256

Domino 
512 × 512

#3 #7

#3 #7

#3 #7

#3 #7

#1 #5

#1 #5

#1 #5

#1 #5

#1 #9

#1 #9

#1 #9

#1 #9

GAP-TV

DeSCI

BIRNAT

U-net

Fig. 6. Real data Wheel(left), Domino (middle) and Water Balloon (right): results of
GAP-TV, DeSCI, U-net and BIRNAT.Please refer to more real data results in the SM.

4.3 Results on Real SCI Data

We now apply BIRNAT to real data captured by the SCI cameras [23, 35] to
verify the its robustness. The Wheel snapshot measurement of size 256 × 256
pixels encodes 14 (B = 14) high-speed videos. The mask is the shifting random
mask with the pixel shifts determined by the pre-set translation of the printed
film. The Domino and Water Balloon snapshot measurement of size 512 × 512
pixels encodes 10 frames, in which the mask is controlled by a DMD [35]. The
real captured data have noise inside and thus the SCI for real data is more
challenging. As shown in Fig. 6, the reconstructed video by BIRNAT shows finer
and complete details compared with other methods, with a significant saving on
the reconstruction time during testing compared to DeSCI. This indicates the
applicability and efficiency of our algorithm in real applications.

5 Conclusions

In this paper, we have proposed a bidirectional RNN with adversarial training
for snapshot compressive imaging system, called BIRNAT. We employ a dual-
stage framework, where the first frame is reconstructed through an attention
ResBlock based deep CNN, and then the following frames are sequentially in-
ferred by RNN. The experimental results on both simulation and real-world SCI
camera data have demonstrated that the proposed method achieves superior
performance and outperforms current state-of-the-art algorithms.
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