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Abstract—For multimodal representation learning, traditional
black-box approaches often fall short of extracting interpretable
multilayer hidden structures, which contribute to visualize the
connections between different modalities at multiple semantic
levels. To extract interpretable multimodal latent representations
and visualize the hierarchial semantic relationships between dif-
ferent modalities, based on deep topic models, we develop a
novel multimodal Poisson gamma belief network (mPGBN) that
tightly couples the observations of different modalities via impos-
ing sparse connections between their modality-specific hidden
layers. To alleviate the time-consuming Gibbs sampler adopted
by traditional topic models in the testing stage, we construct a
Weibull-based variational inference network (encoder) to directly
map the observations to their latent representations, and fur-
ther combine it with the mPGBN (decoder), resulting in a
novel multimodal Weibull variational autoencoder (MWVAE),
which is fast in out-of-sample prediction and can handle large-
scale multimodal datasets. Qualitative evaluations on bimodal
data consisting of image-text pairs show that the developed
MWVAE can successfully extract expressive multimodal latent
representations for downstream tasks like missing modality impu-
tation and multimodal retrieval. Further extensive quantitative
results demonstrate that both MWVAE and its supervised exten-
sion sMWVAE achieve state-of-the-art performance on various
multimodal benchmarks.

Index Terms—Bayesian inference, deep topic model,
multimodal representation learning, variational autoencoder
(VAE).
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I. INTRODUCTION

DATA in the real world usually come through various
input channels, typically exhibiting multiple modalities

that carry different formulations of information. Although
each modality is often characterized with extremely distinct
statistical properties, the semantic content of any modality
is unlikely to be independent of the others. For instance,
images are often associated with annotations or captions (e.g.,
user tags or subtitles), and videos contain both visual and
audio signals. Aiming at combing the information of co-
occurrence modalities, multimodal data modeling is increas-
ingly attracting attention in many fields especially computer
version (CV) [1]–[3], neural language processing (NLP), and
computer–human interaction [4], [5].

To exploit the connections between different data modal-
ities, significant progress has been made in the field of
multimodal representation learning. One of the leading
approaches could be based on probabilistic topic models,
specifically latent Dirichlet allocation (LDA) [6] and other
more sophisticated variations [7]–[10]. Through constructing
a probabilistic model over integer bag-of-word (BoW) repre-
sentations, topic models provide a meaningful semantic latent
representation for each document via inferring its document-
topic proportions, which can be naturally applied to model
images represented as visual-word vectors [11]. Benefitting
from the flexibility of LDA, several multimodal variants,
such as correspondence LDA (corr-LDA) [12] and multimodal
LDA [13], have been proposed recently to model the joint
generative process of multimodal data, through heuristically
constructing the relationships between modality-specific top-
ics. Moreover, the class label can also be regarded as an
additional modality and embedded into LDA, which can sig-
nificantly improve the discriminative power of the inferred
latent representations [11], [14]. One appealing characteristic
of these approaches based on topic modeling is that the task
of extracting multimodal latent representations can be easily
formulated as a probabilistic inference problem, which can be
further solved with routine procedures [15]. Although achiev-
ing appealing performance, these multimodal topic models are
still limited by their shallow structures that can only explore
the connections between different modalities at a shallow
semantic level.

Another popular approach of multimodal representation
learning is based on the distributed representations modeled
by artificial neurons. A common strategy is to construct
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a deep neural network (DNN) for each data modality,
and then share some specific semantic hidden layers of
these modality-specific networks. For instance, based on the
restricted Boltzmann machine (RBM), several multimodal
approaches [16]–[18] are typically developed via sharing an
RBM as their top hidden layers and have achieved great
success in jointly modeling pairs of images and text annota-
tions. Recently, with the improvement of calculations, deep
learning methods, including convolutional neural networks
(CNNS) [19], recurrent neural networks (RNNs) [20], and self-
attention networks (SANs) [21] have been widely used for
modality-specific tasks and also achieved promising results.
However, there is still a challenge for these deep learning
approaches to interpret or even visualize the relationships
between their modality-specific hidden layers, under conven-
tional multimodal representation learning settings.

To alleviate this issue and take advantage of both
aforementioned approaches, we consider constructing a
novel multimodal probabilistic model based on deep topic
models [8], [22]–[24], which can not only provide multilayer
latent document representations in an unsupervised manner but
also be easily interpreted for their intuitive top-down network
structures. Due to the fact that these deep topic models are still
constrained by sophisticated inference algorithms and require
a large number of iterations to infer the document-topic pro-
portions, there is a recent trend to construct an inference
network (encoder) directly mapping the observations to their
latent representations, which can be jointly optimized with the
probabilistic generative model (decoder) via minimizing the
negative evidence lower bound (ELBO), resulting in a varia-
tional autoencoder (VAE) [25]. Moreover, there is also a trend
to extend VAE-based methods to multimodal fields, such as
multimodal factorization model [26] for exploring intramodal
and cross-modal interactions for prediction, and multimodal
VAE [27] for solving the multimodal inference problem.
However, considering that most existing VAEs [28], [29] still
heavily rely on Gaussian latent variables, which often fail to
well approximate the posteriors of the skewed, sparse, and
non-negative latent representations, how to construct an effec-
tive VAE framework for the proposed probabilistic multimodal
model remains to be carefully investigated.

In this article, we first develop a novel multimodal Poisson
gamma belief network (mPGBN) based on a deep topic model,
specifically PGBN [8], and then construct a non-Gaussian
multimodal VAE, making our model both scalable and fast
in out-of-sample prediction. The contributions of this article
are as follows.

1) A novel multimodal deep topic model named mPGBN
is proposed, which tightly couples the image-text topics
across all hidden layers and provides easily interpretable
hierarchical semantic representations.

2) To make the mPGBN more flexible, we propose adap-
tive normalization to handle variable input scales and
extend different link functions to fit multiple modalities
characterized with distinct statistical properties.

3) Moving beyond Gaussian reparameterization, we con-
struct a Weibull-based multimodal inference network
(encoder) to approximate the analytic posteriors

provided by the mPGBN (decoder), resulting in a novel
multimodal Weibull VAE (MWVAE).

4) Benefitting from the extensibility of MWVAE, side
information, like the label of the image-text pair, can
be interpreted to generalize MWVAE to fit various
downstream multimodal tasks and further improve the
performance.

5) A hybrid MCMC/VAE inference method is developed
for MWVAE to handle large-scale datasets, and experi-
mental results demonstrate that our models can achieve
state-of-the-art performance on various benchmarks.

Note that the mPGBN presented here first appeared in
Wang et al. [30] and we have unified related materials in
our conference publication. Moving beyond the mPGBN, we
develop a novel Weibull-based multimodal VAE extension,
equipped with a hybrid MCMC/VAE inference method in
this version, and further investigate how to integrate global
image features into our models. To obtain more discriminate
multimodal representations, a supervised variant sMWVAE is
developed, which balances the generative and discriminative
aspects in the loss function via introducing a regularization
hyperparameter.

The remainder of this article is organized as follows.
Section II overviews some related works to demonstrate the
differences and advantages of our models. Section III intro-
duces the preliminary of PGBN [8] and explains the structure
of mPGBN equipped with extension techniques. Section IV
illustrates the VAE framework based on mPGBN, specifically
MWVAE, and the corresponding inference details. Section V
reports a series of experimental results on both qualitative and
quantitative aspects to evaluate our models.

II. RELATED WORK

Learning a multimodal representation across modalities and
predicting missing modality conditioned on the others are
two key challenges in the field of multimodal representation
learning, where a naive approach could be directly concate-
nating the data descriptors of different modalities, resulting
in a raw high-dimensional feature vector. Although signifi-
cantly improving the performance of downstream tasks like
multimodal classification [3], [31] and retrieval [32], [33], this
naive approach has difficulty in accomplishing missing modal-
ity imputation and often increases the calculation burden for
these tasks due to the explosion of the feature dimension.

As previously mentioned, one appealing approach of
modeling multimodal data is to explore the multimodal exten-
sions of topic models. For instance, aiming at discovering
the relationships between the images and their corresponding
annotated tags, corr-LDA is developed via constructing one-to-
one mapping between modality-specific topics [12]. Similarly,
multimodal LDA directly relates the topics of different modal-
ities with a regression module [13]. Besides annotated tags,
supervised LDA (sLDA) [11], [14] introduces the label embed-
ding into LDA and further improves the discriminative power
of the inferred multimodal representations. Although there
have been a lot of principled solutions, such as variational
inference (VI) or MCMC sampling, to solve the inference
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problem of these topic models, the inference procedure is still
trivial and computationally expensive. Seriously, in the test-
ing stage, these topic modeling-based multimodal approaches
often rely on a large number of iterations to infer their latent
representations, making them unfriendly to the request of real-
time processing. Moreover, the basic LDA can only capture the
shallow semantic information, leading to these variants based
on LDA having difficulties in exploring high-level seman-
tics, which motivates us to construct a hierarchical multimodal
probabilistic topic model.

Thanks to the stochastic gradient (SG) optimization, some
popular deep learning approaches are developed recently and
may contribute to address these aforementioned issues. For
instance, a variant of deep autoencoder (DAE) is applied
to learn multimodal representations for both vision and
speech modalities, exhibiting that cross-modality feature learn-
ing outperforms only using a single modality [34]. To
jointly model image-text pairs, the multimodal deep belief
network (mDBN) [16] constructs modality-specific DBNs
for different modalities and then combines them via shar-
ing an RBM as their top hidden layers. Further, mDBN
is extended to a multimodal deep Boltzmann machine
(mDBM) [17] via directly replacing the modality-specific
DBNs with DBMs. Recently, a neural autoregressive topic
model called a document neural autoregressive distribution
estimator (DocNADE) [35] is applied to deal with multimodal
data in computer vision, via incorporating the spatial visual-
word information with a novel structure. To make the joint
representations of image-text pairs more discriminative, a
supervised variant (SupDocNADE) [36] is developed and
confirms the importance of balancing the generative and dis-
criminative aspects in the loss function. However, limited
by nonlinear black-box neural networks, these deep-learning-
based multimodal approaches still have difficulty in visualizing
network structures and there is no distinct association between
different modalities.

In contrast to aforementioned conventional deep-learning-
based approaches, the proposed MWVAE has an excellent
ability in exploratory multimodal data analysis, benefitting
from the integration of the mPGBN, which plays an impor-
tant decoder role in the MWVAE. Before going into technical
details, we intuitively exhibit how an image-text pair is fac-
torized under the developed MWVAE as shown in Fig. 1,
where the chosen image topics for generating the image are
highly correlated with the keywords of the corresponding text
topics.

III. MULTIMODAL POISSON GAMMA BELIEF NETWORK

Based on the deep probabilistic topic models, we construct
a novel mPGBN that tightly couples different modalities at
multiple levels of abstraction and can easily visualize the gen-
erative process of multimodal input. Below we first briefly
review the preliminaries of PGBN, which plays a build-
ing block role in our models and then explain the novel
mPGBN equipped with corresponding extension techniques in
detail.

A. Poisson Gamma Belief Network

In this part, we first briefly review the PGBN [8], which
can infer multilayer latent representations from a group of
discrete observations. Specifically, representing a set of N
documents X = {xn}N

n=1 as BoW vectors, each sample could
be a high-dimensional sparse count vector xn ∈ Z

K(0)
, where

Z = {0, 1, . . . , } and K(0) denotes the vocabulary length.
Factorizing the observed multivariate count vectors xn under
the Poisson likelihood, the generative model of the PGBN with
L hidden layers can be formulated as

θ (L)
n ∼ Gam

(
r, 1/c(L+1)

n

)

. . .

θ (l)
n ∼ Gam

(
�(l+1)θ (l+1)

n , 1/c(l+1)
n

)

. . .

xn ∼ Pois
(
�(1)θ (1)

n

)
, θ (1)

n ∼ Gam
(
�(2)θ (2)

n , 1/c(2)
n

)
(1)

where the superscript denotes the layer index. For each hidden
layer l, the latent representation θ (l)

n ∈ R
K(l)

+ can be factorized

into the product of the factor loading �(l+1) ∈ R
K(l)×K(l+1)

+
and the latent representation θ (l+1)

n ∈ R
K(l+1)

+ in the next layer
under the gamma distribution, where R+ = {x : x ≥ 0}.
Specifically, the top layer’s hidden units θ (L)

n share the same
gamma shape parameters r = (r1, . . . , rK(L) )′ and {θ (l)

n }L
l=1 at

different layers can be also referred as topic proportions.
To make the PGBN both scale identifiable and inference

convenient, each column of �(l) ∈ R
K(l−1)×K(t)

+ is restricted to
have the L1 norm through introducing a Dirichlet prior as

φ
(l)
k ∼ Dir

(
η(l), . . . , η(l)

)
(2)

where φ
(l)
k ∈ R

K(l−1)

+ denotes the kth column of �(l). And the
gamma scale parameters {1/c(l)

n }2,L+1 satisfy

c(l)
n ∼ Gam(e0, 1/f0) (3)

for l ∈ {2, . . . , L + 1}. Note that the single-layer version of
PGBN reduces to Poisson factor analysis (PFA) [7].

1) Hierarchical Semantic Topic: One of the most attractive
properties is that the PGBN can provide a principled prob-
abilistic interpretation for the extracted hierarchical semantic
topics, denoted as {�(l)}L

l=1 in (1). For the bottom layer, each
document xn can be seen as a random mixture over K(1) top-
ics like LDA [6], since E[xn|�(1), θ (1)

n ] = �(1)θ (1)
n . For higher

layers, successive factorization under the gamma distribution
results in

E

[
xn|θ (l)

n ,
{
�(t), c(t)

n

}l

t=1

]
=
[

l∏
t=1

�(t)

]
θ (l)

n∏l
t=2 c(t)

n

(4)

which makes it easy to examine the nodes of hidden layers
via projecting them to the bottom layer. In other words, the
semantic topics at layer l can be visualized according to their
projections calculated as {[∏l−1

t=1 �(t)]φ(l)
k }K(l)

k=1, and thus each
document can also be seen as a random mixture over K(l)

topics with θ (l)
n being the corresponding topic proportions at

layer l. Moreover, the topics learned by PGBN tend to be
more specific at lower layers and those at higher layers are
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Fig. 1. Generate process visualization of input image-text pair learned by MWVAE trained on the MIR-Flickr dataset. Taking the image-text pair as input,
MWVAE can extract a shared latent multimodal representation θshare_n with the inference network (encoder) and then provide reconstructions with mPGBN
(decoder), where the exhibited modality-specific topics are top-k largest factors and the detailed visualization technique has been described in Section V-C.

more general as shown in Fig. 2, which is quite similar to the
underlying thought of deep learning.

B. Multimodal Poisson Gamma Belief Network

Below we explain the technical details of the developed
mPGBN, taking that both the image and text inputs are count
vectors as our basic case.

1) Model Architecture: Assuming that both image and
text modality-specific descriptors are BoW count vectors, we
first construct the mPGBN via sharing the multilayer hidden
variables of two modality-specific PGBNs, except for their
connection weights between the visible layer and first hid-
den layer. Then the generative model of the mPGBN can be
expressed as

θ
(L)
share_n ∼ Gam

(
rshare, 1/c(L + 1)

share_n

)

. . .

θ
(l)
share_n ∼ Gam

(
�

(l+1)
share θ

(l+1)
share_n, 1/c(l+1)

share_n

)

. . .

ximg_n ∼ Pois
(
�

(1)
imgθ

(1)
share_n

)
, xtxt_n ∼ Pois

(
�

(1)
txt θ

(1)
share_n

)

(5)

where the subscript indicates the abbreviation of each specific
modality (or shared by both). Note that both modality-specific
input vectors ximg_n and xtxt_n are first projected into a
common semantic representation θ

(1)
share_n ∈ R

K(1)

+ , and then

each latent representation θ
(l)
share_n ∈ R

K(l)

+ of layer l is fur-
ther successively factorized into the product of the factor
loading �

(l+1)
share_n ∈ R

K(l)×K(l+1)

+ and the latent representation

θ
(l+1)
share_n ∈ R

K(l+1)

+ of the next layer under the gamma distribu-

tion. Moreover, the same as {�(t)
share}L

t=2, each column of �
(1)
img

or �
(1)
txt is restricted to have a simplex constrain.

The underlying intuition behind sharing modality-specific
representations at multiple layers is that even though differ-
ent modalities tend to exhibit distinct statistical properties,
there could be still strong correlations between their latent
representations at multiple semantic levels. Specifically, the
image and text descriptors collected from the same image-
text pair can be seen as two different exhibitions of the same
semantic meaning. For instance, the image of a tiger shares
relative shallow semantic meanings with the word “tiger,”
high-level semantics with the word “big cat,” and even a higher
abstraction level with the word “carnivore.” Similar network
structures have been proven efficient in DeepDocNADE [36],
but there are still a lot of differences between the proposed
mPGBN and these deep-learning-based methods. As shown
in Fig. 2, the multimodal generative model mPGBN, which
plays a decoder role in the following proposed MWVAE, could
capture an interpretable latent structure at different semantic
levels, contributing to understanding both the semantic mean-
ings of multilayer latent representations and the correlations
between different modalities reflected at the same level of
abstraction.

2) Upward–Downward Gibbs Sampler: Thanks to the data
augmentation technique [37], the proposed mPGBN provides
analytic posteriors and can be further trained with an upward–
downward Gibbs sampler [8]. For each iteration, the Gibbs
sampler first upward samples factor loadings {�(l)}L

l=1 start-
ing from the bottom visible layer, then downward samples
topic proportions {θ (l)

n }L
l=1 starting from the top hidden layer.

Distinct from the PGBN, the developed mPGBN adopts mul-
tisource data augmentations at the first hidden layer and the
corresponding update equation of θ

(1)
share_n can be formulated as

(
θ

(1)
share_n|−

)
∼ Gam

(
m(1)(2)

img_n + m(1)(2)
txt_n

+ �
(2)
shareθ

(2)
share_n1/

[
2 + c(2)

n

])

(6)
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Fig. 2. Two [14, 3, 1] modality-specific trees taken from the MWVAE trained on the MIR-Flickr dataset. Note each modality-specific tree has included all
the lower layer nodes (directly or indirectly) linked with non-negligible weights starting from the 20th node at the top hidden layer, where the connection
from node k at layer l to node k′ at layer l − 1 satisfies the constraint of �

(t)
k′k > 10/K(l−1). For the text-specific tree, six keywords of the corresponding topic

are displayed inside the text box at layer one and 12 keywords at other layers. As for the image-specific tree, top-k relevant images retrieved from MIR-Flickr
are exhibited inside the corresponding image box, via measuring their Euclidean distances to the learned image theme features.

where m(1)(2)
img_n and m(1)(2)

txt_n are both augmented count matrix,
which are sampled from their corresponding modalities, but
will both directly influence the gamma shape parameter of the
first layer’s latent representation, specifically θ

(1)
share_n.

Note that different from the layerwise training adopted in
multimodal DBN [16], the upward–downward Gibbs sampler
can train the multilayer mPGBN as an integration and provide
the corresponding iterative upward–downward information
propagation. Further, benefit from training the whole network
jointly, the mPGBN can not only tightly couple image themes
and text topics learned from multimodal input but also explore
the relationships of semantic meanings between different
modality-specific hidden layers.

C. Model Extension Techniques

Aiming at making the proposed mPGBN adaptive to both
variable input scales and multiple modalities with distinct
statistical properties, we propose flexible model extension
techniques as follows.

1) Link Functions: In addition to directly fitting high-
dimensional count observations with the Poisson likelihood,

we equip the proposed mPGBN with a set of link func-
tions [37] to fit other types of modality-specific inputs.

Supposing the observations are high-dimensional binary
vectors bn ∈ {0, 1}K(0)

, we can adopt the Bernoulli-Poisson
link formulated as

bn = 1
(
xn ≥ 0

)
, xn ∼ Pois

(
�(1)θ (1)

n

)
. (7)

If the observations are high-dimensional non-negative real-
value vectors yn ∈ R

K(0)

+ , we can factorize them with the
Poisson randomized gamma link specifically as

yn ∼ Gam
(
xn, 1/an

)
, xn ∼ Pois

(
�(1)θ (1)

n

)
. (8)

Taking advantage of link functions mentioned above, the text-
specific PGBN can directly fit integer BoW vectors or model
binary annotated tags with the Bernoulli-Poisson link formu-
lated in (7), whereas the image-specific PGBN can use the
Poisson randomized gamma link shown in (8) to fit positive
image features or model handcraft count vectors like visual
words extracted from images.

2) Adaptive Normalization: The original mPGBN formu-
lated in (5) has a potential issue that the different modality-
specific inputs may have various data scales. To this end, we
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propose a novel adaptive normalization technique to modify
the mPGBN as

θ
(1)
img_n = δimg_nθ

(1)
share_n, θ

(1)
txt_n = δtxt_nθ

(1)
share_n

ximg_n ∼ Pois
(
�

(1)
imgθ

(1)
img_n

)
, xtxt_n ∼ Pois

(
�

(1)
txt θ

(1)
txt_n

)
. (9)

Benefit the adaptive normalization technique, the first latent
representations of both modalities, specifically θ

(1)
img_n and

θ
(1)
txt_n, only share their gamma shape parameters but have their

own adaptive scale parameters to suit different input scales.
Equipped with these useful extension techniques, the

proposed mPGBN can improve the expressivity of hierarchial
latent representations, outperforming conventional multimodal
topic models that only construct connections between different
modalities at a single semantic level.

IV. MULTIMODAL WEIBULL VARIATIONAL

AUTOENCODER

Although the analytic posteriors of mPGBN provide effi-
cient inference with Gibbs sampler that can be further accel-
erated with GPU [38], mPGBN is still limited by the following
disadvantages.

1) Characterized by a top-down generative structure, it
relies on time-consuming batch sampling when inferring
the latent representations.

2) Restricted by the Gibbs sampler, it is not easy to plug in
extra side information to extend mPGBN, such as image
labels.

3) To handle the increasing amount and complexity of data,
a scalable inference algorithm is required for mPGBN.

To alleviate these issues, we combine the mPGBN (decoder)
with a Weibull-based VI network (encoder), resulting in a
novel MWVAE. Then we develop a corresponding hybrid
stochastic-gradient-MCMC/autoencoding VI algorithm for
MWVAE, which learns the global parameters of the mPGBN
jointly with those of the inference network.

A. Weibull Variational Posterior

The most important issue in constructing a VAE-like model
is the choice of latent distributions, and most existing latent
Gaussian-based VAEs [28], [29] have achieved a great success
benefiting from the characteristics of the Gaussian reparame-
terization. However, these Gaussian distributed latent variables
have difficulty in modeling gamma distributed ones, which
are often sparse, non-negative, and skewed. Moving beyond
Gaussian-based VAEs, we choose the Weibull reparameter-
ization to approximate the gamma distributed conditional

posteriors of {θ
(l)
share_n}

L

l=1
considering the following advan-

tages.
1) Similar PDF With Gamma Distribution: The Weibull

distribution owns similar probability density functions (PDFs)
with a gamma one, which makes it flexible to model sparse
and non-negative latent representations

Weibull PDF: P(x|k, λ) = k

λk
xk−1e(x/λ)k

Gamma PDF: P(x|α, β) = βα

�(α)
xα−1e−βx. (10)

2) Easily Reparameterization: The latent variable x ∼
Weibull(k, λ) can be easily reparameterized as

x = λ(− ln(1 − ε))1/k, ε ∼ Uniform(0, 1) (11)

leading to a similar gradient calculation with the Gaussian
reparameterization.

3) Analytic KL-Divergence: Moverover, the KL-divergence
between the Weibull and gamma distributions has an analytic
expression formulated as

KL(Weibull(k, λ)||Gamma(α, β)) = −α ln λ + γα

k

+ ln k + βλ�

(
1 + 1

k

)
− γ − 1 − α ln β + ln �(α). (12)

B. Multimodal Weibull Variational Autoencoder

Taking advantage of the Weibull distribution, we construct
a novel multimodal VAE framework based on the proposed
mPGBN, so-called mutlimodal Weibull VAE (MWVAE),
where the mPGBN plays a role of the generative model
(decoder) equipped with a corresponding Weibull-based infer-
ence network as shown in Fig. 3. Distinct from the common
inference network of a usual VAE [25], which adopts a
pure bottom-up structure ignoring the impact of the prior
and only interacts with the generative model via the ELBO,
MWVAE constructs an upward–downward structure inspired
by the upward–downward information propagation in Gibbs
sampler of mPGBN. Note that this upward–downward struc-
ture has not only an upward information propagation through
hierarchical semantic latent representations {h(l)

share_n}L
l=1 but

also a downward one {�(l+1)
share θ

(l+1)
share_n}L−1

l=1 acting as the prior
from the higher layer, which naturally meets the posteriors
of {θ (l)

share_n}L
l=1 as shown in (6). Specifically, the inference

network of MWVAE can be formulated as
L−1∏
l=1

q
(
θ

(l)
share_n|�(l+1)

share , θ
(l+1)
share_n, h(l)

share_n

)
q
(
θ

(L)
share_n|−

)
(13)

where the Weibull distribution is introduced to approximate
the gamma distributed conditional posterior of each latent
representation θ

(l)
share_n formulated as

q
(
θ

(l)
share_n|−

)
= Weibull

(
�

(l+1)
share θ

(l+1)
share_n + k(l)

share_n,λ
(l)
share_n

)
.

(14)

Note that k(l)
share_n ∈ R

K(l)

+ and λ
(l)
share_n ∈ R

K(l)

+ are both
Weibull parameters of the lth shared hidden layer to reparam-
eterize θ

(l)
share_n with (11), and deterministically transformed

from the observed image-text pairs using the neural networks
expressed as

h(l)
share_n = ln

(
1 + exp

(
W(l)

h h(l−1)
share_n + b(l)

h

))

k(l)
share_n = ln

(
1 + exp

(
W(l)

k h(l)
share_n + b(l)

k

))

λ
(l)
share_n = ln

(
1 + exp

(
W(l)

λ h(l)
share_n + b(l)

λ

))
(15)

where W(l)
h ∈ R

K(l−1)×K(l)
, W(l)

k , W(l)
λ ∈ R

K(l)×K(l)
,

b(l)
h ,b(l)

k ,b(l)
λ ∈ R

K(l)
. For the first hidden layer, we take the
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Fig. 3. Detailed structure of a three-layer multimodal Weibull-based inference network (enocder) for the proposed MWVAE, where different colored blocks
indicate different network components.

normalized image-text pair as input and specifically denote
h(1)

share_n = softplus(W(1)
img log(1+ximg_n)+W(1)

txt log(1+xtxt_n)+
b(1)

h ) with b(l)
h ∈ R

K(1)
, W(1)

img ∈ R
K(0)

img×K(1)

, W(1)
txt ∈ R

K(0)
txt ×K(1)

.
Moving beyond the traditional VAE-like models giving

point estimations for their latent representations, MWVAE
adopts the Weibull reparameterization in the inference network
to introduce stochastics into these latent representations and
further improves the model performance. Moreover, the addi-
tional semantic hidden layers {h(l)

share_n}L
l=1 tightly couple

different modalities in a hierarchical fashion and have the
equivalent of the augmented vectors {m(l)(l+1)

share_n }L
l=1 in Gibbs

sampler. From another perspective, it is also flexible to incor-
porate side information into {h(l)

share_n}L
l=1, and then propagate

it to the latent representations {θ (l)
share_n}L

l=1.
1) Exploiting Global Image Features: Although equipped

with flexible link functions described in Section III-C1,
the proposed mPGBN still has difficulty in dealing with
real-valued global modality-specific embeddings, which have
been proven efficient to improve the expressivity of the
inferred multimodal latent representations [17]. Moving
beyond the constraint of Gibbs sampler, MWVAE pro-
vides a potential solution to integrate the global fea-
tures into latent representations {θ (l)

share_n}L
l=1, benefiting

from the flexible VAE-like framework. Then we will
describe how to incorporate global image features into
the MWVAE, which can be also easily extended to other
modalities.

Distinct from SupDocNADE [36], which introduces global
image features xg_n ∈ R

K(0)
g via directly concatenating it

with the visual-word vector ximg_n, we project xg_n into
multilayer representations {e(l)

g_n}L
l=1 and then integrate them

with {h(l)
share_n}L

l=1 in a hierarchical fashion. Specifically,
the latent representation of global image features can be
obtained as

e(l)
g_n = softplus

(
W(l)

e e(l−1)
g_n + b(l)

e

)
(16)

where e(0)
g_n = xg_n. Then the multilayer global image repre-

sentations are interpreted via a linear transformation as

h(l)
share_n = softplus

(
W(l)

h h(l−1)
share_n + W(l)

c e(l)
g_n + b(l)

h

)
(17)

specifically defining h(1)
share_n = softplus(W(1)

img log(1+ximg_n)+
W(1)

txt log(1+xtxt_n)+W(1)
c e(1)

g_n+b(1)
h ). The underlying intuition

is that the global image features also exhibit variable statistical
characteristics at different semantic levels. In the following
experiments, both handcraft global image features and deep-
learning-based ones like encoding the original image with
CNN [19] are taken into consideration to extend our models.

C. Hybrid MCMC/VAE Inference Method

Although having closed-form update equations, the Gibbs
sampler for the global parameters of the mPGBN, specifi-
cally � = {�(1)

img,�
(1)
txt , {�(l)

share}L
l=2}, still requires processing

all image-text pairs in each iteration. To alleviate this issue, we
adopt TLASGR-MCMC [39] based on the Fisher information
matrix (FIM) to update these global parameters, via increas-
ing the sampling efficiency. Specifically, suppose φ

(l)
k is the

kth topic in the lth layer of mPGBN with the prior φ
(l)
k ∼

Dirichlet(η(l)
k ), the sampling of it can be realized as

φ
(l)new
k =

{
φ

(l)
k + ε

(l)
i

M(l)
k

[(
ρx̃(l)

:k· + η(l)
)

−
(
ρx̃(l)

·k· + η(l)K(l−1)
)
φ

(l)
k

]

+N

(
0,

2ε
(l)
i

M(l)
k

diag
(
φ

(l)
k

))}

∠
(18)

where i denotes the number of mini-batches processed so far.
Here, the symbol · in the subscript denotes summing over the
corresponding dimension of the minibatch, and the definitions
of ρ, ε

(l)
i , M(l)

k and {·}∠ are analogous to these in TLASGR-
MCMC [39] and omitted here for brevity.

Then we combine the mentioned TLASGR-MCMC and the
proposed MWVAE into a hybrid MCMC/VAE inference algo-
rithm as shown in Algorithm 1, which updates the inference
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Algorithm 1 Hybrid Stochastic-Gradient MCMC and VAE
Inference for MWVAE

Set the mini-batch size m and the number of layer L;
Initialize the inference network parameters (encoder)
� = {W(1)

img, W(1)
txt , {W(l)

h }L
l=2, {b(l)

h , W(l)
k , b(l)

k , W(l)
λ , b(l)

λ }L
l=1}

and mPGBN parameters � = {�(1)
img,�

(1)
txt , {�(l)

share}L
l=1}

for iteration = 1, 2, · · · do
Randomly select a mini-batch of m image-text pairs to
form a subset X = {ximg_i, xtxt_i}m

i=1;
Estimate local parameters {δimg_i, δtxt_i}m

i=1;
Draw random noise ε = {ε(l)

i }m,L
i=1,l=1 from uniform

distribution;
Calculate ∇�L(�,�; X, ε) according to (19) and
update �;
Sample {θ (l)

share_i}m,L
i=1,l=1 from (14) via � and update �

according to (18);
end for

network parameters �, and infers the global parameters � of
the generative model jointly. Note that the whole proposed
structure above can be optimized to maximize the ELBO in
unsupervised manner, which can be formulated as

Lg =
N∑

n=1

E

[
ln p

(
ximg_n|�(1)

img, θ
(1)
share_n, δimg_n

)]

+
N∑

n=1

E

[
ln p

(
xtxt_n|�(1)

txt , θ
(1)
share_n, δtxt_n

)]

−
N∑

n=1

L∑
l=1

E

⎡
⎣ln

q
(
θ

(l)
share_n

)

p
(
θ

(l)
share_n|�(l+1)

share , θ
(l+1)
share_n

)
⎤
⎦ (19)

where the third term is analytic as shown in (12). Moreover,
benefit from the simple reparameterization of the Weibull dis-
tribution, the gradient of the first and second terms of the
ELBO can be directly calculated [40].

To obtain more discriminative multimodal latent represen-
tations, we consider to extend the unsupervised MWVAE
into a supervised version, referred as sMWVAE, by introduc-
ing label information into the latent representations. Moving
beyond directly mapping the top layer’s latent representation to
label probabilities like SupDocNADE [36], we add a softmax
classifier on the concatenation of these latent representations
{θ (l)

share_n, h(l)
share_n}L

l=1, aiming at broadcasting label information
across all hidden layers. Specifically defining the concate-
nated vector as 	n, the predicted label probabilities ŷn ∈ R

C+,
where C denotes the number of classes, can be obtained as
ŷn = softmax(Wy	n + by). Then the whole loss function of
sMWVAE can be formulated as

Ls = Lg + λ · Lc
(
yn, ŷn

)
(20)

where λ is treated as a regularization hyperparameter [36] to
balance the generative loss Lg defined in (19) and the cross-
entropy loss Lc.

V. EXPERIMENTS AND RESULTS

In the experimental section, we investigate the proposed
models on both qualitative and quantitative aspects.
Specifically, we first evaluate the characteristics of the
MWVAE with a series of qualitative tasks, showing that the
MWVAE can successfully accomplish both missing modality
imputation and multimodal retrieval tasks. Then we test both
the performance of MWVAE and sMWVAE on three widely
used multimodal datasets to demonstrate that our models
can achieve state-of-the-art performance compared to other
popular approaches for multimodal representation learning.

A. Datasets and Feature Extraction

Three popular real-world multimodal datasets, including:
1) LabelMe [41]; 2) UIUC-Sports [42]; and 3) MIR-
Flickr [43], are used in the following experiments.

1) LabelMe: LabelMe dataset [41] is constructed via using
online tool [11] to collect images from the following eight
categories, including: 1) street; 2) coast; 3) forest; 4) moun-
tain; 5) highway; 6) tall building; 7) inside city; and 8) open
country. Specifically, 200 images are selected for each class,
resulting in a total of 1600 images, and split evenly into the
training and testing sets.

2) UIUC-Sports: UIUC-Sports dataset [42] contains 1792
images, covering eight classes: 1) badminton; 2) croquet;
3) rowing; 4) rockclimbing; 5) snowboarding; 6) sailing;
7) polo; and 8) bocce. After resizing, the images of each class
are also split evenly into the training and testing sets, the same
as the previous work [11].

3) MIR-Flickr: MIR-Flickr dataset [43] contains 1 million
images equipped with annotated tags, which are retrieved from
the social photography website Flickr. Among these retrieved
image-text pairs, 25 000 pairs are annotated for 24 concepts
and a stricter labeling is done for 14 of these concepts, result-
ing in a total of 38 classes, where each image may belong to
several classes. In the following experiments, 15 000 labeled
image-text pairs are used for training and other 10 000 ones
used for testing.

4) Feature Extraction: To make a fair comparison, the
same 128-D dense SIFT features [11] are used to extract
the visual words from both LabelMe and UIUC-Sports
datasets. Following the previous work [11], these SIFT fea-
tures extracted from the training images are quantized into
240 clusters with K-means clustering algorithm, constructing
the visual-word vocabulary. For annotated tags, we discard
the words occurring less than three times to construct BoW
vectors.

For the MIR-Flickr dataset, we adopt the same text
and image features used in the experiments of multimodal
DBM [17]. A text vocabulary consisting of the 2000 most
frequent words is constructed and each text input is repre-
sented as a BoW vector. Then the images are represented as
visual-word vectors using a 2000-D visual-word vocabulary,
which is constructed via clustering SIFT features from the
unlabeled images. Distinct from LabelMe and UIUC-Sports
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TABLE I
SUMMARY STATISTICS FOR THE DATASETS AFTER FEATURE EXTRACTION

Fig. 4. MAP of the MWVAE for MIR-Flickr 25k as a function of K(l) with
various depths L ∈ {1, 2, 3, 4, 5}.

datasets, MIR-Flickr provides additional 1857-D global fea-
tures, consisting of multiple handcraft descriptors, which can
be integrated into our models as described in Section IV-B.

For an intuitive insight, the summary statistics of all bench-
marks are listed in Table I (N: dataset size, C: number of target
classes, K(0)

img: visual-word vocabulary size, K(0)
txt : text-word

vocabulary size, and K(0)
img: global image feature length).

B. Model Architecture Learning

We first focus on investigating the influence of the network
structure of MWVAE, including both the aspects of network
width and depth. We construct MWVAEs with various network
structures for unsupervisedly extracting latent representations
from MIR-Flickr and the mean average precision (MAP) over
all classes is used to measure the performance. Specifically,
15 000 randomly selected image-text pairs are used to train
a set of MWVAEs with K(l) ∈ {50, 100, 200, 400, 800} and
L ∈ {1, 2, 3, 4, 5}, setting the hyperparametersset η(l) = 0.05
for all l, {rk}K(L)

k=1 = 0.1, and {c(l)
n }N,L

n=1,l=1 = 1. Each MWVAE
is trained with the hybrid MCMC/VAE inference method as
described in Algorithm 1, setting minibatch m = 200, and
the standard Adam [44] with learning rate 0.001 is used for
optimazation. After the model converges, we estimate the pos-
teriors of latent representations for the remaining 10 000 test
samples, and perform 1-versus-all classification with the logis-
tic regression on the first hidden layers {θ (1)

share_n}N
n=1 to get

MAP scores. The results are shown in Figs. 4 and 5 exhibit
a clear trend of performance improvement by increasing the
width of the hidden layers with a fixed network depth, or by
increasing the depth with a fixed layer width.

Fig. 5. MAP of the MWVAE for MIR-Flickr 25k as a function of the depth
L with various K(l) ∈ {50, 100, 200, 400, 800}.

C. Qualitative Tasks

In this part, we evaluate the characteristics of the MWVAE
with qualitative tasks, including multimodal retrieval, modality
generation, and semantic topic visualization. We construct a 3-
layer MWVAE for MIR-Flickr, setting the network structure as
[K(1), K(2), K(3)] = [500, 200, 100], and other training details
are the same as described in Section V-B.

1) Multimodal Retrieval: We first perform multimodal
retrieval tasks, taking image-text pairs as input, to evaluate the
expressivity of the multimodal latent representations inferred
by MWVAE. Given a query image-text pair, the task is to
retrieve other similar pairs from a collection with the inferred
multimodal latent representations. Specifically, for each query
pair randomly selected from MIR-Flickr, we calculate the
cosine similarity between the latent representations of the
query sample and the other remaining ones to measure their
relevance.

As shown in Fig. 6, for each query sample, we exhibit the
corresponding retrieved top-5 most relevant image-text pairs in
the same row. From the results, the retrieved image-text pairs
are highly relevant to the query sample listed in the leftmost
column, showing that the MWVAE can provide expressive
semantic latent representations for multimodal inputs.

2) Modality Generation: Second, we tend to evaluate the
generative ability of the MWVAE, which can be formu-
lated as fixing the missing modality given another observed
one. Following bimodal DAE [34], we mask either image
or text input to infer the single-modality latent represen-
tation {θ (l)

share_n}N,L
n=1,l=1 via directly projection, and then fix

the missing modality using the generative model mPGBN
(decoder).

As shown in Fig. 7, we randomly select several images
covering various categories of MIR-Flickr and display the
corresponding generated tags on the right side. Benefit from
tightly coupling different modalities in a hierarchial fashion,
the MWVAE can successfully accomplish the missing text
imputation given the image and these generated tags are highly
correlated with the corresponding image at multiple semantic
levels. Taking the third image of the first row as an example,
the MWVAE not only generates scene-level words, such as
“winter,” “storm” and “snow,” as the main part of the image

Authorized licensed use limited to: Duke University. Downloaded on May 06,2021 at 03:18:00 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 6. Top-5 relevant image-text pairs retrieved with the multimodal latent representations inferred by the MWVAE. For each row, the leftmost image-text
pair indicates the query sample, while the others on the right side are retrieved samples with the highest cosine similarities in the database.

Fig. 7. Examples of annotated tags (right column) generated by the MWVAE conditioned on the observed images (left column).

is white but also captures more subtle information like “tree”
and “people” that also occur in the corresponding image.

In addition, we also evaluate the quality of the generated
image features of the MWVAE, taking only text as input. To
visualize these image features intuitively, we retrieve the top-
5 relevant images from MIR-Flickr for each generated image
feature, via measuring their Euclidean distances. From the
results shown in Fig. 8, it is obvious that the MWVAE can
also impute missing image modality, which provides a more
impressive explanation for text input.

3) Semantic Topic Visualization: To understand the specific
and general aspects of the image-text pairs for training, two
hierarchical modality-specific trees, which pick the 20th node
of the top hidden layer as their root nodes, are constructed
to visualize the topics at different semantic levels, specifi-
cally {�(l)

img,�
(l)
txt}L

l=1 of MWVAE learned from MIR-Flickr.
For each modality-specific tree, we only retain the node whose
connection from node k at layer l to node k′ at layer l − 1
satisfies the constraint of �

(t)
k′k > τ(l)/K(l−1), where τ (l) is

a hyperparameter to adjust the complexity of a tree, and we
set τ (l) = 10 for all l. Then we can explore the connections
between the image themes and text topics, through project-
ing them to the corresponding visible layers as described in
Section III-A.

As shown in Fig. 2, following the branches of the text-
specific tree, it is obvious that when moving along the tree
from top to bottom, these text topics become more and more
specific. According to the keywords displayed inside text
boxes, the root node on “sky clouds sunset flower people” is
split into three nodes on behalf of distinct semantic mean-
ings when moving from the layer three to the layer two.
Specifically, the three nodes of the second layer are mainly

about “flower animal garden,” “girl boy child,” and “sun-
set clouds sky” and all split into more specific topics of the
first hidden layer. For the image-specific tree, we express the
“key words” of a image node at different semantic levels with
the top three or four relevant images that are retrieved using
the image feature of the corresponding node, considering the
low-level features cannot be directly visualized.

Comparing both the text and image trees shown in Fig. 2, we
can find that the retrieved images, which reveal the inferred
theme of a image node, have a highly correlated semantic
meaning with the keywords of the corresponding text topic.
Taking the fourth node at the second layer as an example,
the keywords of this text node are mainly about “flower ani-
mal,” while the corresponding image theme characterized by
retrieved images is highly related to both “flower” and “ani-
mal” aspects. Then the fourth text node of the layer two
on “flower animal” is split into several nodes of the layer
one, including node 80 on “flower” and node 29 on “animal,”
which are also the semantic meanings of the retrieved images
displayed in the corresponding image nodes.

D. Quantitative Tasks

To further evaluate our models, we make quantitative com-
parisons with other popular multimodal learning approaches
in this part, showing that our models achieve state-of-the-art
performance over strong baselines.

1) Image Annotation and Classification Tasks: In the
first part, we measure the performance of single-layer
MWVAE/sMWVAE on LabelMe and UIUC-Sports datasets,
which are popular benchmarks for image annotation and
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Fig. 8. Top-5 relevant images retrieved using the features generated by the MWVAE conditioned on the given tags at the leftmost column.

classification. To make extensive comparisons, the approaches
included in our comparisons are demonstrated as follows.

1) SPM [45]: Spatial pyramid matching (SPM) is a com-
putationally efficient extension of orderless BoW image
representations, providing a significant performance
improvement on challenging scene categorization tasks.

2) MMLDA [46]: Max-margin LDA (MMLDA) is a max-
margin variant of supervised topic model and two
different versions of MMLDA are developed to integrate
either discriminative classification or image annotation
with generative topic models.

3) sLDA [11]: sLDA embeds image tags into a probabilistic
model, resulting in a supervised topic model. Thus sLDA
combines the terms of images, tags and class labels, per-
forming classification and annotation at the same latent
semantic topic space.

4) DocNDADE/SupDocNADE [36]: DocNADE is
developed to directly model the joint distribution
of the words in a document and a supervised variant
(SupDocNADE) is further proposed to model the joint
distribution over an image’s visual words, tags and
class label.

To make a fair comparison, the same network structures
with 200 hidden topic units are used for our models and
the tradeoff hyperparameter λ in sMWVAE is chose based
on cross validation. Following DocNADE/supDocNADE [36],
we mask the text-modality input as zeros and only use image
visual-word vectors to predict labels and annotations in the
testing stage. For evaluation metrics, classification accuracy
and the average F-measure of the top-5 predicted annotations
are used to evaluate the performance of image classification
and annotation, respectively, following previous works [11].

From the classification results (Accuracy%) listed in
Table II, SPM [45], which separates feature extraction and
classification stages, achieves a lower classification accuracy
on both datasets. Benefit from combining both generative
and discriminative aspects, sLDA [11] provides more expres-
sive latent representations than a purely generative approach
and slightly outperforms MMLDA [46]. However, sLDA still
has difficulty in balancing the generative and discrimina-
tive aspects in the loss function, which has been proven
quite important for supervised topic modeling [36], leading
to a worse performance in the following image annota-
tion task. Through introducing regularization hyperparameter,
supDocNADE and sMWVAE can calibrate the generative and

TABLE II
PERFORMANCE COMPARISONS OF MWVAE AND SMWVAE WITH

DIFFERENT METHODS ON LABELME AND UIUC-SPORTS DATASETS

discriminative aspects of the loss function, outperforming their
unsupervised visions and other mentioned methods. Compared
to supDocNADE, sMWVAE provides a distribution estimation
rather than a point estimation for multimodal latent repre-
sentations, which effectively alleviate overfitting and further
improve the performance, achieving state-of-art results 84.72%
and 78.02% on LabelMe and UIUC-Sports, respectively.
Similar conclusions can be found in the image annotation task
(F-measure%) in Table II. Here, we emphasize that sMW-
VAE achieves comparable results to MMLDA on LabelMe,
which performs classification and annotation separately, and
state-of-art performance 47.46% on UIUC-sports.

2) Multimodal Classification Tasks: Then we evaluate the
performance of deep extensions of MWVAE/sMWVAE on
MIR-Flickr, which is a challenging large-scale multimodal
benchmark. To make a comprehensive investigation, we list
both unsupervised and supervised models included in our
comparisons as follows.

1) Bimodal DAE [34]: Bimodal DAE is first initialed with
the parameters of a pretrained bimodal DBN [16] and
then finetuned to reconstruct both modalities given either
modality-specific input.

2) Multimodal DBN/DBM [16], [17]: mDBN constructs
modality-specific DBNs for different modalities and then
combine them via sharing an RBM as their top layers.
Further, the mDBM is developed by replacing the DBNs
of mDBN with corresponding modality-specific DBMs.

3) DeepDocNADE [36]: DeepDocNADE is the deep exten-
sion of DocNADE via extending the neural network in
DocNADE into a multilayer version.

4) Multiple Kernel Learning SVMs [31]: Multiple Kernel
learning SVMs is a semisupervised learning approach,
leveraging the information of annotated tags equipped
with unlabeled images in a two-step process.
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TABLE III
PERFORMANCE AND TESTING TIME COMPARISONS OF UNSUPERVISED

METHODS ON THE MIR-FLICKER DATASET

5) TagProp [47]: A weighted nearest neighbor model that
predicts the term relevance of images via taking a
weighted sum of the annotations from the visually most
relevant images within a collection of image-text pairs.

6) Supervised Multimodal DBM [48]: Supervised
multimodal DBM is constructed via incorporating
tree-based priors into the discriminatively trained neural
networks.

7) MDRNN [18]: Multimodal deep RNN (MDRNN) adopts
a recurrent encoding function to predict the target modal-
ity given another modality input via minimizing the
variation of information.

8) SupDeepDocNADE [36]: SupDeepDocNADE is a
supervised variant of DeepDocNADE that introduces
the class label modality to extract more discriminative
multimodal latent representations.

Note that the top three items are unsupervised methods
while the remaining others are supervised ones. Then we con-
struct three different MWVAEs/sMWVAEs with T ∈ {1, 2, 3}
and set the same network structures as pervious methods [16],
[17] with K(1) = K(2) = K(3) = 2048. To further evaluate
the advantage of introducing global image features, we con-
sider constructing MWVAEs/sMWVAEs coupled with either
traditional handcraft or deep-learning-based image features.
For handcraft features, we use the 1857-D global image fea-
tures provided by DeepDocNADE [36], which are the same
as those provided by mDBM [17]. For deep-learning-based
features, VGG-16 [49] is applied to extract 2048-D global
image features after resizing each image into the same size
224 × 224. The details of integration have been described in
Section IV, and we add the suffix −hc for these models cou-
pled with traditional handcraft features and −cnn for others
coupled with CNN-based features. MAP is used for evaluation
and we report the average performance of the five indepen-
dent splits on MIR-Flickr, where the training/testing/validation
partitions are the same as other methods.

TABLE IV
PERFORMANCE AND TESTING TIME COMPARISONS OF SUPERVISED

METHODS ON THE MIR-FLICKER DATASET

As the unsupervised comparisons in Table III, we first pro-
vide the results of traditional handcraft features as baselines,
including RANDOM, TF-IDF, and original BoW features, in
the first group. LDA achieves a better performance than these
handcraft features, showing the effectiveness of topic mod-
els in multimodal representation learning, but there is still a
gap between the shallow LDA and other deep models. For
RBM-based methods, mDBN separates the training stages
of modality-specific DBNs and the shared top-layer RBM,
resulting in a slightly worse performance than mDBM, which
trains the whole deep network jointly. However, these RBM-
based methods, including Bimodal DAE, are limited by only
sharing the top hidden layer and have difficulty in captur-
ing the connections between different modalities at multiple
semantic levels. Benefit from tightly coupling multilayer latent
representations, mPGBNs, DeepDocNADEs and MWVAEs
outperform other methods, and there is a clear trend of
performance improvement with the increase of the network
depths. Specifically, taking advantage of providing analytic
posteriors, mPGBNs outperform MWVAEs under the same
network structure settings, but still have difficulty in plug-
ging in extra side information, limited by the Gibbs sampler.
Through integrating handcraft global image features into latent
representations, DeepDocNADE-hc and MWVAE-hc have a
great improvement in the multimodal classification. Moreover,
MWVAEs tend to outperform DeepDocNADEs under the
same network settings, proving the superiority of the distri-
bution estimation for latent representations and the sparsity
provided by the Weibull reparameterization. Here, we high-
light that the developed MWVAE-hc with three hidden layers
achieves the state-of-the-art performance, MAP of 0.587, on
the MIR-Flickr in an unsupervised manner. To investigate the
effectiveness of link function and adaptive normalization, we
add an ablation study for the 3-layer MWVAE-hc at the bottom
of Table III. From the results, we can find that either the link
function or adaptive normalization can bring the performance
improvement, and the bare 3-layer MWVAE-hc-no-both can
still outperform the 3-layer DeepDocNADE-hc.

Table IV presents the comparisons between sMWVAEs
and other outstanding supervised baselines. From the results,
Multiple kernel learning SVMs and TagProp only consider
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Fig. 9. MAP of the SupDeepDocNADE-hc and sMWVAE-hc, which incor-
porate handcraft global image features, for MIR-Flickr 25k as a function of
the regularization hyperparameter λ.

Fig. 10. MAP of the SupDeepDocNADE-cnn and sMWVAE-cnn, which
incorporate CNN-based global image features, for MIR-Flickr 25k as a
function of the regularization hyperparameter λ.

the discriminate aspects in their loss functions, and achieve
MAP 0.623 and 0.640, respectively. Moving beyond maxi-
mizing the likelihood, MDRNN is trained to minimize the
variation of information and performs a recurrent encod-
ing structure in prediction tasks, outperforming supervised
multimodal DBM at the cost of increasing the network com-
plexity. We emphasize that Multiple kernel learning SVMs,
supervised multimodal DBM and MDRNN are required to
be pretrained on the unlabeled 975 000 image-text pairs from
MIR-Flickr. Without any pretraining stage, we evaluate the
performance of SupDeepDocNADEs and sMWVAEs coupled
with either handcraft or CNN-based global image features.
As shown in the last two groups, these methods coupled
with CNN-based image features outperform others coupled
with handcraft ones, proving that CNNs can extract more
discriminative image features. Moreover, sMWVAEs outper-
form SupDeepDocNADEs under the same network settings
and sMWVAE-cnn with three hidden layers achieves state-
of-art supervised multimodal classification performance with
MAP of 0.751.

From the aspect of model efficiency, we exhibit the com-
parisons of testing time in the rightmost columns of both
Tables III and IV, for unsupervised and supervised methods,

Fig. 11. MAP of unsupervised methods with different number of training
samples on MIR-Flickr 25k.

Fig. 12. MAP of supervised methods with different number of training
samples on MIR-Flickr 25k.

respectively. Limited by the Gibbs sampler, LDA [6] and
mPGBN require batch-level sampling iterations to obtain the
multimodal latent representations, leading to a lot of time cost
in the testing phase. Among the other methods based on feed-
forward projection, there is a clear trend that the testing time
cost will increase with the complexity of the network structure
(or the depth of the same method), where MDRNN [18] could
be the most time-consuming method, constrained by the recur-
rent structure of RNN in prediction. Thanks to the Weibull-
based inference network, the developed MWVAEs/sMWVAEs
can directly infer the stochastic latent representations with
feedforward projection, achieving a comparable efficiency to
other deep-learning-based methods.

3) Balance Between the Generation and Classification: To
investigate the impact of the regularization hyperparameter λ

in sMWVAE, we perform additional experiments with vari-
ous values of λ on MIR-Flickr. Two shallow sMWVAEs with
2048 hidden units are constructed, which incorporate either
handcraft (-hc) or CNN-based (-cnn) global image features,
and other details are the same as described above. As shown
in Fig. 9, the sMWVAE-hc outperforms SupDeepDocNADE-
hc in the range of λ from 10−5 to 104, and achieves the
best performance at λ = 101, which indicates that the
importance of balancing the generative and discriminative
aspects in the loss function. Moreover, the performance of
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SupDeepDocNADE-hc is extremely sensitive to the varies of
λ, while sMWVAE-hc is relatively stable. The underlying
reason could be that the sMWVAE provides a distribution
estimation for the multimodal latent representations, which
effectively alleviates the impact of the discriminate aspect,
contributing to the flexibility of hyper parameter selection for
other downstream tasks. Similar conclusions can be obtained
by comparing the performance of SupDeepDocNADE-cnn and
sMWVAE-cnn as shown in Fig. 10, which further confirm the
superiority of our methods.

4) Robustness to the Smaller Training Set: To further
investigate the impact of the training set size, we train the
aforementioned models with variable number of training sam-
ples N ∈ {3000, 6000, 9000, 12 000, 15 000} selected from
MIR-Flickr. For an intuitive comparison, we divide these
methods into two categories according to either unsuper-
vised or supervised training stage, and report the average
performance achieved by five independent runs as shown in
Figs. 11 and 12, respectively.

As the unsupervised comparisons exhibited in Fig. 11,
there is a clear trend that the MAP scores of all methods
will improve as the number of samples increases, equipped
with a gradually slowing down rate of performance improve-
ment. Specifically, the performance of DeepDocNADE and
DeepDocNADE-hc drop sharply as the number of sam-
ples decreases, while the MWVAE and MWVAE-hc tend
to be more robust with a smaller dataset size. Notably, the
MWVAE without global image features even outperforms
DeepDocNADE-hc when the amount of training samples is
less than 6000. For the supervised comparisons in Fig. 12, the
sMWVAE coupled with handcraft (-hc) or CNN-based (-cnn)
global image features is more robust to the reduction of train-
ing set, which is consistent with the unsupervised situation.
We attribute the robustness of our methods to the following
reasons.

1) The deep probabilistic topic model mPGBN (decoder)
for data generation, which increases the diversity of
multimodal observations [50].

2) The distribution estimation for multimodal latent repre-
sentations, which introduces the stochastics into latent
representations and alleviates the overfitting when the
training samples are insufficient.

VI. CONCLUSION

In this article, we construct a novel multimodal proba-
bilistic topic model named mPGBN that can tightly couple
hierarchical latent representations of different modalities, pro-
viding an interpretable network structure to illustrate the
connections between these modalities at multiple semantic
levels. For both efficient inference and easy to plug in side
information, MWVAE is developed to couple the mPGBN
(decoder) and a Weibull-based multimodal inference network
(encoder), equipped with a corresponding hybrid MCMC/VAE
inference method. Based on MWVAE, we improve the expres-
sivity of the inferred multimodal latent representations, via
incorporating global image features, either handcraft or CNN-
based. Then we evaluate the effectiveness of MWVAE with

extensive qualitative experiments, showing that the MWVAE
can successfully accomplish both missing modality imputation
and multimodal retrieval tasks. Further quantitative analysis
on various popular benchmark datasets demonstrate that our
proposed models can achieve state-of-the-art performance on
extracting multimodal latent representations.
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